2022-2023學年河北省魏縣達標名校中考數(shù)學對點突破模擬試卷含解析_第1頁
2022-2023學年河北省魏縣達標名校中考數(shù)學對點突破模擬試卷含解析_第2頁
2022-2023學年河北省魏縣達標名校中考數(shù)學對點突破模擬試卷含解析_第3頁
2022-2023學年河北省魏縣達標名校中考數(shù)學對點突破模擬試卷含解析_第4頁
2022-2023學年河北省魏縣達標名校中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.tan45°的值等于()A. B. C. D.12.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是53.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定4.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉,使ON邊與BC邊重合,完成第一次旋轉;再繞點C逆時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;……在這樣連續(xù)6次旋轉的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.45.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.6.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨7.下列因式分解正確的是()A. B.C. D.8.cos30°=()A. B. C. D.9.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.10.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.12.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.13.如圖,⊙O的半徑為6,四邊形ABCD內(nèi)接于⊙O,連接OB,OD,若∠BOD=∠BCD,則弧BD的長為________.14.已知關于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________15.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.16.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.17.某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行了統(tǒng)計,繪制了如圖1和圖2所示的統(tǒng)計圖,則B品牌粽子在圖2中所對應的扇形的心角的度數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.19.(5分)如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.20.(8分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應環(huán)數(shù)的次數(shù)01310乙命中相應環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變?。ㄌ睢白兇蟆?、“變小”或“不變”)21.(10分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.22.(10分)東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?23.(12分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.24.(14分)計算:.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.2、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D3、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.4、D【解析】

如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.5、A【解析】

根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題的關鍵是熟練的掌握銳角三角函數(shù)的定義.6、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.7、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內(nèi)不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關鍵是掌握提公因式法和公式法的方法.8、C【解析】

直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數(shù)點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.9、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.10、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據(jù)勾股定理得到OD′==2,于是得到結論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1或1﹣2【解析】

當點P在AF上時,由翻折的性質可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當點P在BE上時,由正方形的性質可知BP為AF的垂直平分線,則AP=PF,由翻折的性質可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質、正方形的性質的應用,根據(jù)題意畫出符合題意的圖形是解題的關鍵.12、.【解析】

利用規(guī)定的運算方法,分別算得a1,a2,a3,a4…找出運算結果的循環(huán)規(guī)律,利用規(guī)律解決問題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關鍵在于掌握運算法則找到規(guī)律.13、4π【解析】

根據(jù)圓內(nèi)接四邊形對角互補可得∠BCD+∠A=180°,再根據(jù)同弧所對的圓周角與圓心角的關系以及∠BOD=∠BCD,可求得∠A=60°,從而得∠BOD=120°,再利用弧長公式進行計算即可得.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的長=,故答案為4π.【點睛】本題考查了圓周角定理、弧長公式等,求得∠A的度數(shù)是解題的關鍵.14、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.15、3【解析】試題分析:根據(jù)點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點可得:EF為△ABC的中位線,根據(jù)中位線的性質可得:EF=AB=3.考點:(1)、直角三角形的性質;(2)、中位線的性質16、x≥1【解析】

把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據(jù)圖象可以知道當x≥1時,y=x+1的函數(shù)值不小于y=mx+n相應的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數(shù)與不等式(組)的關系及數(shù)形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數(shù)形結合.17、120°【解析】

根據(jù)圖1中C品牌粽子1200個,在圖2中占50%,求出三種品牌粽子的總個數(shù),再求出B品牌粽子的個數(shù),從而計算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對應的圓心角的度數(shù).【詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個,又∵A、C品牌的粽子分別有400個、1200個,∴B品牌的粽子有2400-400-1200=800個,則B品牌粽子在圖2中所對應的圓心角的度數(shù)為360×.故答案為120°.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?、解答題(共7小題,滿分69分)18、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)見解析;(1)4【解析】

(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質和三角形的面積公式進行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點D,F(xiàn)分別是AC,AB的中點,AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點睛:本題考查了菱形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點D是AC的中點,得到CD=BD是解答(1)的關鍵,由菱形的性質和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關鍵.20、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解析】

(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據(jù)方差公式進行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;

在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;

故答案為8,6和9;

(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數(shù)是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩(wěn)定;

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。?/p>

故答案為變?。军c睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術平均數(shù)、中位數(shù)和眾數(shù).21、這棟高樓的高度是【解析】

過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉化為直角三角形的計算.22、(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是1元.【解析】分析:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)數(shù)量=總價÷單價結合第二批購進數(shù)量是第一批數(shù)量的1.5倍,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設每套悠悠球的售價為y元,根據(jù)銷售收入-成本=利潤結合全部售完后總利潤不低于25%,即可得出關于y的一元一次不等式,解之取其中的最小值即可得出結論.詳解:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)題意得:,解得:x=25,經(jīng)檢驗,x=25是原分式方程的解.答:第一批悠悠球每套的進價是25元.(2)設每套悠悠球的售價為y元,根據(jù)題意得:500÷25×(1+1.5)y-500-90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論