2022-2023學年江蘇省淮安市金湖縣達標名校中考三模數(shù)學試題含解析_第1頁
2022-2023學年江蘇省淮安市金湖縣達標名校中考三模數(shù)學試題含解析_第2頁
2022-2023學年江蘇省淮安市金湖縣達標名校中考三模數(shù)學試題含解析_第3頁
2022-2023學年江蘇省淮安市金湖縣達標名校中考三模數(shù)學試題含解析_第4頁
2022-2023學年江蘇省淮安市金湖縣達標名校中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在同一直角坐標系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.12.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點B對應點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)3.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.4.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)5.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.6.下列方程有實數(shù)根的是()A. B.C.x+2x?1=0 D.7.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm8.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|9.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元10.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.2017年7月27日上映的國產(chǎn)電影《戰(zhàn)狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數(shù)法表示為_____元.12.方程組的解一定是方程_____與_____的公共解.13.拋物線y=x2+2x+m﹣1與x軸有交點,則m的取值范圍是_____.14.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.16.函數(shù)的自變量的取值范圍是.17.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.三、解答題(共7小題,滿分69分)18.(10分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.用樹狀圖或列表法求出小王去的概率;小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.19.(5分)如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標.20.(8分)如圖,在中,,是角平分線,平分交于點,經(jīng)過兩點的交于點,交于點,恰為的直徑.求證:與相切;當時,求的半徑.21.(10分)如圖,一次函數(shù)y=-x+5的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.求反比例函數(shù)的解析式;在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)y=(k≠0)的值時,寫出自變量x的取值范圍.22.(10分)如圖,在平行四邊形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,AF=DE求證:(1)△ABF≌△DCE;四邊形ABCD是矩形.23.(12分)問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=______,連接OF;(3)在CD邊上取點G,使CG=______,連接OG;(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.24.(14分)小方與同學一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質(zhì).【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.2、B【解析】

作出點A、B繞點C按順時針方向旋轉(zhuǎn)90°后得到的對應點,再順次連接可得△A1B1C,即可得到點B對應點B1的坐標.【詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點B對應點B1的坐標為(2,2).故選:B.【點睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應點位置是解題關鍵.圖形或點旋轉(zhuǎn)之后要結合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.3、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質(zhì),解題的關鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識點.4、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.5、D【解析】

本題關鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關鍵.6、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數(shù)根,故本選項符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.7、D【解析】【分析】先求AC,再根據(jù)點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關鍵點:利用線段的中點求出線段長度.8、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.9、C【解析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.10、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關鍵是熟知概率的計算公式.二、填空題(共7小題,每小題3分,滿分21分)11、5.68×109【解析】試題解析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).56.8億故答案為12、5x﹣3y=83x+8y=9【解析】

方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.13、m≤1.【解析】

由拋物線與x軸有交點可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關于m的一元一次不等式,解之即可得出結論.【詳解】∴關于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點睛】本題考查的知識點是拋物線與坐標軸的交點,解題的關鍵是熟練的掌握拋物線與坐標軸的交點.14、4【解析】

當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.15、1【解析】

作AB的中點E,連接EM、CE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據(jù)三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.16、x≠1【解析】該題考查分式方程的有關概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠117、-1.【解析】

設正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標,代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.三、解答題(共7小題,滿分69分)18、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)60°;(2)見解析;(3)對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關系.

(3)此題應考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關于x軸、y軸、原點的對稱點,可據(jù)此進行求解.【詳解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等邊三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半徑,故PC與⊙O的位置關系是相切.(3)如圖;有三種情況:①取C點關于x軸的對稱點,則此點符合M點的要求,此時M點的坐標為:M1(2,﹣2);劣弧MA的長為:;②取C點關于原點的對稱點,此點也符合M點的要求,此時M點的坐標為:M2(﹣2,﹣2);劣弧MA的長為:;③取C點關于y軸的對稱點,此點也符合M點的要求,此時M點的坐標為:M3(﹣2,2);優(yōu)弧MA的長為:;④當C、M重合時,C點符合M點的要求,此時M4(2,2);優(yōu)弧MA的長為:;綜上可知:當S△MAO=S△CAO時,動點M所經(jīng)過的弧長為對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【點睛】本題考查了切線的判定以及弧長的計算方法,注意分類討論思想的運用,不要漏解.20、(1)證明見解析;(2).【解析】

(1)連接OM,證明OM∥BE,再結合等腰三角形的性質(zhì)說明AE⊥BE,進而證明OM⊥AE;(2)結合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=4,cosC=∴BE=2,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB==6,設⊙O的半徑為r,則AO=6-r,∵OM∥BC,∴△AOM∽△ABE,∴∴,∴,解得,∴的半徑為.【點睛】本題考查了切線的判定;等腰三角形的性質(zhì);相似三角形的判定與性質(zhì);解直角三角形等知識,綜合性較強,正確添加輔助線,熟練運用相關知識是解題的關鍵.21、(1);(2)1<x<1.【解析】

(1)將點A的坐標(1,1)代入,即可求出反比例函數(shù)的解析式;

(2)一次函數(shù)y=-x+5的值大于反比例函數(shù)y=,即反比例函數(shù)的圖象在一次函數(shù)的圖象的下方時自變量的取值范圍即可.【詳解】解:(1)∵一次函數(shù)y=﹣x+5的圖象過點A(1,n),∴n=﹣1+5,解得:n=1,∴點A的坐標為(1,1).∵反比例函數(shù)y=(k≠0)過點A(1,1),∴k=1×1=1,∴反比例函數(shù)的解析式為y=.聯(lián)立,解得:或,∴點B的坐標為(1,1).(2)觀察函數(shù)圖象,發(fā)現(xiàn):當1<x<1.時,反比例函數(shù)圖象在一次函數(shù)圖象下方,∴當一次函數(shù)y=﹣x+5的值大于反比例函數(shù)y=(k≠0)的值時,x的取值范圍為1<x<1.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,以及用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,是基礎知識要熟練掌握.解題的關鍵是:(1)聯(lián)立兩函數(shù)解析式成二元一次方程組;(2)求出點C的坐標;(3)根據(jù)函數(shù)圖象上下關系結合交點橫坐標解決不等式.本題屬于基礎題,難度不大,解決該題型題目時,聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點的坐標是關鍵.22、(1)見解析;(2)見解析.【解析】

(1)根據(jù)等量代換得到BE=CF,根據(jù)平行四邊形的性質(zhì)得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四邊形的性質(zhì)得到兩邊平行,從而∠B+∠C=180°.利用全等得∠B=∠C,從而得到一個直角,問題得證.【詳解】(1)∵BE=CF,BF=BE+EF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論