版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.2.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–23.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.4.平面上直線a、c與b相交(數(shù)據(jù)如圖),當直線c繞點O旋轉某一角度時與a平行,則旋轉的最小度數(shù)是()A.60° B.50° C.40° D.30°5.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°6.下列運算中正確的是()A.x2÷x8=x?6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a37.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經過點C和點D,則k的值為()A. B. C. D.8.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|9.如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(12,1),下列結論:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.410.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=8二、填空題(共7小題,每小題3分,滿分21分)11.要使式子有意義,則的取值范圍是__________.12.分解因式:ab2﹣9a=_____.13.不等式組的解集是____________;14.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.15.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調查,要求每名學生只寫一類最喜歡的球類運動,以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比為____________%16.如圖,已知,,則________.17.分解因式:ax2﹣2ax+a=___________.三、解答題(共7小題,滿分69分)18.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)19.(5分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(8分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數(shù)根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.21.(10分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.22.(10分)解不等式組:23.(12分)畫出二次函數(shù)y=(x﹣1)2的圖象.24.(14分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.2、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.3、C【解析】
物體的俯視圖,即是從上面看物體得到的結果;根據(jù)三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關鍵是熟練的掌握幾何體三視圖的定義.4、C【解析】
先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質即可得出結論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質,用到的知識點為:兩直線平行,同旁內角互補.5、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.6、A【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【點睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.7、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.8、A【解析】
根據(jù)相反數(shù)的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數(shù),故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數(shù)的定義,解題的關鍵是掌握相反數(shù)的定義.9、C【解析】①根據(jù)圖象知道:a<1,c>1,∴ac<1,故①正確;②∵頂點坐標為(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正確;③根據(jù)圖象知道:x=1時,y=a++b+c>1,故③錯誤;④∵頂點坐標為(1/2,1),∴4ac-b24a其中正確的是①②④.故選C10、D【解析】
根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;
故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件可得關于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.12、a(b+3)(b﹣3).【解析】
根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.13、﹣9<x≤﹣1【解析】
分別求出兩個不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式組的解集為:-9<x≤-1,故答案為:-9<x≤-1.【點睛】本題考查一元一次不等式組的解法,屬于基礎題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、【解析】
由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設MN與OP交于點E,
∵點O、P的距離為4,
∴OP=4
∵折疊
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.15、1%【解析】
依據(jù)最喜歡羽毛球的學生數(shù)以及占被調查總人數(shù)的百分比,即可得到被調查總人數(shù),進而得出最喜歡籃球的學生數(shù)以及最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比.【詳解】∵被調查學生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比=×100%=1%,
故答案為:1.【點睛】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.16、65°【解析】
根據(jù)兩直線平行,同旁內角互補求出∠3,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點睛】此題考查平行線的性質,解題關鍵在于利用同旁內角互補求出∠3.17、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共7小題,滿分69分)18、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.應用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.19、(1)(2).【解析】
(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、方程的根【解析】
(1)根據(jù)方程的系數(shù)結合根的判別式,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當k=0時,方程的根為0和﹣1.【點睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數(shù)根”;(1)取k=0,再利用分解因式法解方程.21、可以求出A、B之間的距離為111.6米.【解析】
根據(jù),(對頂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農業(yè)機械出租與農產品冷鏈物流合同3篇
- 二零二五年度公寓租賃合同書(含共享空間服務)3篇
- 2025年度大型國企原材料采購合同風險管理與優(yōu)化3篇
- 2025年度公務車輛個人使用管理與費用監(jiān)督協(xié)議3篇
- 二零二五年度數(shù)字健康產業(yè)合作成立公司協(xié)議3篇
- 2025年度車輛分期付款買賣合同協(xié)議書3篇
- 農村土地征收補償安置買賣合同(2025年版)3篇
- 二零二五年度農村土地經營權流轉與農業(yè)產業(yè)鏈金融合作合同2篇
- 二零二五年度高端醫(yī)療器械采購合同風險分析與預防3篇
- 二零二五年度美發(fā)品牌形象授權合作合同3篇
- 外研版小學英語(三起點)六年級上冊期末測試題及答案(共3套)
- 跨部門合作銷售提成方案
- 外研版(三起)四上Module1-Module10思維導圖
- FZ/T 01041-2014絨毛織物絨毛長度和絨毛高度的測定
- 《經濟學導論》考試復習題庫(含答案)
- 農田水利渠道灌溉與排水課件
- 六棱塊護坡施工方案
- 機械制圖課件(完整版)
- 《行政組織學小抄》word版
- (完整版)環(huán)境科學與工程-專業(yè)英語詞匯必備(免費)
- 交通管理與控制課件(全)全書教學教程完整版電子教案最全幻燈片
評論
0/150
提交評論