2022-2023學年北京豐臺市級名校中考數學模試卷含解析_第1頁
2022-2023學年北京豐臺市級名校中考數學模試卷含解析_第2頁
2022-2023學年北京豐臺市級名校中考數學模試卷含解析_第3頁
2022-2023學年北京豐臺市級名校中考數學模試卷含解析_第4頁
2022-2023學年北京豐臺市級名校中考數學模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算6m6÷(-2m2)3的結果為()A. B. C. D.2.若2<<3,則a的值可以是()A.﹣7 B. C. D.123.我國古代數學著作《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何?!贝笾乱馑际牵骸坝靡桓K子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據題意所列方程組正確的是()A. B. C. D.4.下列左圖表示一個由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小立方塊的個數,則該幾何體的主視圖為()A. B. C. D.5.如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④6.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.7.如圖,一個鐵環(huán)上掛著6個分別編有號碼1,2,3,4,5,6的鐵片.如果把其中編號為2,4的鐵片取下來,再先后把它們穿回到鐵環(huán)上的仼意位置,則鐵環(huán)上的鐵片(無論沿鐵環(huán)如何滑動)不可能排成的情形是()A. B.C. D.8.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有()A.1個 B.2個 C.3個 D.4個9.如圖,經過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數為()A.99° B.109° C.119° D.129°10.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數最多 B.最喜歡羽毛球的人數是最喜歡乒乓球人數的兩倍C.全班共有50名學生 D.最喜歡田徑的人數占總人數的10%二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.12.將多項式因式分解的結果是.13.若關于x的方程x2﹣8x+m=0有兩個相等的實數根,則m=_____.14.如圖,AB∥CD,點E是CD上一點,∠AEC=40°,EF平分∠AED交AB于點F,則∠AFE=___度.15.設[x)表示大于x的最小整數,如[3)=4,[?1.2)=?1,則下列結論中正確的是______.(填寫所有正確結論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數x,使[x)?x=0.5成立.16.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.17.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.19.(5分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.20.(8分)如圖,在10×10的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內接格點三角形”.設對稱軸平行于y軸的拋物線與網格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數是()A.7 B.8 C.14 D.1621.(10分)“十九大”報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調查,根據調查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.對霧霾了解程度的統(tǒng)計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結合統(tǒng)計圖表,回答下列問題:統(tǒng)計表中:m=,n=;請在圖1中補全條形統(tǒng)計圖;請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?22.(10分)解不等式組:并求它的整數解的和.23.(12分)如圖,已知拋物線經過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.24.(14分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:根據冪的乘方計算法則求出除數,然后根據同底數冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎題型.明白冪的計算法則是解決這個問題的關鍵.2、C【解析】

根據已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數的大小,估算無理數大小要用夾逼法.3、A【解析】

本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.4、B【解析】

由俯視圖所標該位置上小立方塊的個數可知,左側一列有2層,右側一列有1層.【詳解】根據俯視圖中的每個數字是該位置小立方塊的個數,得出主視圖有2列,從左到右的列數分別是2,1.故選B.【點睛】此題考查了三視圖判斷幾何體,用到的知識點是俯視圖、主視圖,關鍵是根據三種視圖之間的關系以及視圖和實物之間的關系.5、C【解析】試題分析:根據題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據函數的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數,離對稱軸越近則函數值越大,則點睛:本題主要考查的就是二次函數的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現a+b+c,則看x=1時y的值;如果出現a-b+c,則看x=-1時y的值;如果出現4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數,離對稱軸越遠則函數值越大,對于開口向下的函數,離對稱軸越近則函數值越大.6、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.7、D【解析】

摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,無論將鐵片2,4穿回哪里,鐵片1,1,5,6在鐵環(huán)上的順序不變,觀察四個選擇即可得出結論.【詳解】解:摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,∵選項A,B,C中鐵片順序為1,1,5,6,選項D中鐵片順序為1,5,6,1.故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,找準鐵片1,1,5,6在鐵環(huán)上的順序不變是解題的關鍵.8、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數圖象與系數的關系,二次函數中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數決定根的判別式的符號,注意二次函數圖象上特殊點的特點.9、B【解析】

方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據平行線的性質求得∠ACF與∠BCF的度數,∠ACF與∠BCF的和即為∠C的度數.【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.10、C【解析】【分析】觀察直方圖,根據直方圖中提供的數據逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數最多,故A選項錯誤;B.最喜歡羽毛球的人數是最喜歡田徑人數的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數占總人數的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉的性質.12、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.13、1【解析】

根據判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.14、70°.【解析】

由平角求出∠AED的度數,由角平分線得出∠DEF的度數,再由平行線的性質即可求出∠AFE的度數.【詳解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案為:70【點睛】本題考查的是平行線的性質以及角平分線的定義.熟練掌握平行線的性質,求出∠DEF的度數是解決問題的關鍵.15、④【解析】

根據題意[x)表示大于x的最小整數,結合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關鍵在于理解題意的運算法則.16、270【解析】

根據三角形的內角和與平角定義可求解.【詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點睛】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.17、2【解析】

根據題意、解直角三角形、菱形的性質、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;(2)證明見解析;【解析】

(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據相似三角形的性質得到結論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質.19、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據m=FG即可得m的值;②設點F與點G的坐標,根據m=FG列出方程化簡可得出m的二次函數關系式,再根據二次函數的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據兩點關系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(﹣3,0)或(﹣3,).【點睛】本題考查了二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.20、C【解析】

根據在OB上的兩個交點之間的距離為3,可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數,同理可得開口向上的拋物線的條數,然后相加即可得解.【詳解】解:如圖,開口向下,經過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數是:7+7=1.故選C.【點睛】本題是二次函數綜合題.主要考查了網格結構的知識與二次函數的性質,二次函數圖象與幾何變換,作出圖形更形象直觀.21、(1)20;15%;35%;(2)見解析;(3)126°.【解析】

(1)根據被調查學生總人數,用B的人數除以被調查的學生總人數計算即可求出m,再根據各部分的百分比的和等于1計算即可求出n;(2)求出D的學生人數,然后補全統(tǒng)計圖即可;(3)用D的百分比乘360°計算即可得解.【詳解】解:(1)非常了解的人數為20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案為20;15%;35%;(2)∵D等級的人數為:400×35%=140,∴補全條形統(tǒng)計圖如圖所示:(3)D部分扇形所對應的圓心角:360°×35%=126°.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小22、0【解析】分析:先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可求出不等式組的解集.詳解:,由①去括號得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,則不等式組的解集為﹣2<x≤1.點睛:本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.23、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】

分析:(1)待定系數法求解可得;

(2)先利用待定系數法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據此列出關于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),

將點C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點D坐標為(0,-2),

設直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論