版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球2.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.下列運算結果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a4.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.5.若分式有意義,則的取值范圍是()A.; B.; C.; D..6.下列因式分解正確的是A. B.C. D.7.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點C為弧BD的中點,若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°8.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C逆時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.49.有一種球狀細菌的直徑用科學記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米10.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:____________.12.閱讀下面材料:在數(shù)學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據(jù)是______.13.若一段弧的半徑為24,所對圓心角為60°,則這段弧長為____.14.已知x1,x2是方程x2-3x-1=0的兩根,則=______.15.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.16.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖2所示的“數(shù)學風車”,若△BCD的周長是30,則這個風車的外圍周長是_____.三、解答題(共8題,共72分)17.(8分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.18.(8分)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數(shù)的圖象于B點,交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?19.(8分)某高校學生會在某天午餐后,隨機調(diào)查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.(1)這次被調(diào)查的同學共有名;(2)補全條形統(tǒng)計圖;(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù);(4)校學生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學生一餐浪費的食物可以供200人用一餐.據(jù)此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?20.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(8分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.22.(10分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.23.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關系式;當產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.2、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【點睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關鍵.3、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.4、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.5、B【解析】
分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.6、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.7、C【解析】連接OC,因為點C為弧BD的中點,所以∠BOC=∠DAB=50°,因為OC=OB,所以∠ABC=∠OCB=65°,故選C.8、D【解析】
如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.9、B【解析】
絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】2.16×10﹣3米=0.00216米.故選B.【點睛】考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.二、填空題(本大題共6個小題,每小題3分,共18分)11、3(x-2)(x+2)【解析】
先提取公因式3,再根據(jù)平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.12、兩點確定一條直線;同圓或等圓中半徑相等【解析】
根據(jù)尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關鍵.13、8π【解析】試題分析:∵弧的半徑為24,所對圓心角為60°,∴弧長為l==8π.故答案為8π.【考點】弧長的計算.14、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.15、1【解析】
由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據(jù)相似三角形的性質(zhì)可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質(zhì),解題的關鍵是掌握相似三角形的判定與性質(zhì).16、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風車的一個輪子,進一步求得四個.詳解:依題意,設“數(shù)學風車”中的四個直角三角形的斜邊長為x,AC=y,則x2=4y2+52,∵△BCD的周長是30,∴x+2y+5=30則x=13,y=1.∴這個風車的外圍周長是:4(x+y)=4×19=71.故答案是:71.點睛:本題考查了勾股定理在實際情況中的應用,注意隱含的已知條件來解答此類題.三、解答題(共8題,共72分)17、(1)①當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標,根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據(jù)QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據(jù)圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側,∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側,且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸交拋物線于點C,分兩種情況:①由圖象可知:圖象f在AC段時,函數(shù)f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點B的右側時,函數(shù)f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.考點:待定系數(shù)法求二次函數(shù)的解析式;二次函數(shù)的增減性問題、三角形相似的性質(zhì)和判定;一元二次方程;一元一次不等式組.18、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個反比例函數(shù)的解析式即可求得點B、C的橫坐標,從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個反比例函數(shù)的解析式即可求得用“a”表示的點B、C的橫坐標,從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數(shù)y=﹣(x<0)的一點,C是函數(shù)y=(x>0)的一點,∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.19、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據(jù)沒有剩飯的人數(shù)是400人,所占的百分比是40%,據(jù)此即可求得調(diào)查的總人數(shù);(2)利用(1)中求得結果減去其它組的人數(shù)即可求得剩少量飯的人數(shù),從而補全直方圖;(3)利用360°乘以對應的比例即可求解;(4)利用20000除以調(diào)查的總人數(shù),然后乘以200即可求解.試題解析:(1)被調(diào)查的同學的人數(shù)是400÷40%=1000(名);(2)剩少量的人數(shù)是1000-400-250-150=200(名),;(3)在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數(shù)是:360°×1501000(4)200001000答:校20000名學生一餐浪費的食物可供4000人食用一餐.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.21、(1)(2)四邊形是菱形.(3)【解析】
(1)根據(jù)等邊對等角及旋轉(zhuǎn)的特征可得即可證得結論;
(2)先根據(jù)兩組對邊分別平行的四邊形是平行四邊形,再得到鄰邊相等即可判斷結論;
(3)過點E作于點G,解可得AE的長,結合菱形的性質(zhì)即可求得結果.【詳解】(1)證明:(證法一)由旋轉(zhuǎn)可知,∴∴又∴即(證法二)由旋轉(zhuǎn)可知,而∴∴∴即(2)四邊形是菱形.證明:同理∴四邊形是平行四邊形.又∴四邊形是菱形(3)過點作于點,則在中,.由(2)知四邊形是菱形,∴∴【點睛】解答本題的關鍵是掌握好旋轉(zhuǎn)的性質(zhì),平行四邊形判定與性質(zhì),的菱形的判定與性質(zhì),選擇適當?shù)臈l件解決問題.22、(1)y=(x>0);(2)S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】
(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.
(2)由題意得P(t,),然后分別從當點P1在點B的左側時,S=t?(-3)=-3t+9與當點P2在點B的右側時,則S=(t-3)?=9-去分析求解即可求得答案;
(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當點P1在點B的左側時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關鍵是注意掌握數(shù)形結合思想、分類討論思想與方程思想的應用.23、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南師范大學科技學院《免疫學實驗》2023-2024學年第一學期期末試卷
- 贛東學院《母嬰中醫(yī)護理學》2023-2024學年第一學期期末試卷
- 七年級生物上冊第二單元第二章第一節(jié)細胞通過分裂產(chǎn)生新細胞教案新版新人教版
- 七年級語文上冊單元清三新人教版
- 三年級科學上冊第一單元科學在我們身邊第二課我們周圍的動物教案青島版
- 甲流乙流培訓課件
- 雪佛蘭銷售培訓課件
- 培訓課件包教學課件
- 《抗菌藥物概論課件》課件
- 小學生比賽課件模板
- 噴塑特殊過程能力確認記錄1
- 高一物理必修一思維導圖
- 錨索張拉和鎖定記錄表
- 2016年校本課程--------合唱教案1
- 【原創(chuàng)】《圓柱與圓錐》復習課教教學設計
- 《中國藥典》規(guī)定中藥飲片用量
- 國網(wǎng)合肥供電公司城市新建住宅小區(qū)電力建設實施細則
- 初中物理元件實物圖及一些常用圖形
- 中小學生備戰(zhàn)期末迎接期末考試動員班會PPT
- 房測之友BMF用戶說明書
- 國自然模板(空白版)
評論
0/150
提交評論