2022屆廣東省東莞中學(xué)高考考前模擬數(shù)學(xué)試題含解析_第1頁(yè)
2022屆廣東省東莞中學(xué)高考考前模擬數(shù)學(xué)試題含解析_第2頁(yè)
2022屆廣東省東莞中學(xué)高考考前模擬數(shù)學(xué)試題含解析_第3頁(yè)
2022屆廣東省東莞中學(xué)高考考前模擬數(shù)學(xué)試題含解析_第4頁(yè)
2022屆廣東省東莞中學(xué)高考考前模擬數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.2.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.83.一個(gè)四面體所有棱長(zhǎng)都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為()A. B. C. D.4.函數(shù)的圖象大致是()A. B.C. D.5.下圖所示函數(shù)圖象經(jīng)過(guò)何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位6.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的的值為()A. B. C. D.7.已知雙曲線:,,為其左、右焦點(diǎn),直線過(guò)右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.8.已知實(shí)數(shù)滿足則的最大值為()A.2 B. C.1 D.09.已知銳角滿足則()A. B. C. D.10.己知函數(shù)的圖象與直線恰有四個(gè)公共點(diǎn),其中,則()A. B.0 C.1 D.11.網(wǎng)格紙上小正方形邊長(zhǎng)為1單位長(zhǎng)度,粗線畫(huà)出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.412.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.二、填空題:本題共4小題,每小題5分,共20分。13.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō)“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了”.丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.14.在平面直角坐標(biāo)系中,曲線在點(diǎn)處的切線與x軸相交于點(diǎn)A,其中e為自然對(duì)數(shù)的底數(shù).若點(diǎn),的面積為3,則的值是______.15.若x,y滿足,且y≥?1,則3x+y的最大值_____16.已知為正實(shí)數(shù),且,則的最小值為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,底面是邊長(zhǎng)為的菱形,,點(diǎn)分別是的中點(diǎn).(1)求證:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)如圖,在長(zhǎng)方體中,,為的中點(diǎn),為的中點(diǎn),為線段上一點(diǎn),且滿足,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過(guò)坐標(biāo)原點(diǎn)作直線交曲線于點(diǎn)(異于),交曲線于點(diǎn),求的最小值.20.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.21.(12分)以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動(dòng)點(diǎn),,點(diǎn)的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時(shí),求直線的普通方程.22.(10分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2.A【解析】

根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)?,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.3.A【解析】

將正四面體補(bǔ)成正方體,通過(guò)正方體的對(duì)角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長(zhǎng)都是4,∴正方體的棱長(zhǎng)為,設(shè)球的半徑為,則,解得,所以,故選:A.【點(diǎn)睛】本題主要考查多面體外接球問(wèn)題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對(duì)角線,從而將問(wèn)題巧妙轉(zhuǎn)化,屬于中檔題.4.C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.5.D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.6.C【解析】

根據(jù)給定的程序框圖,計(jì)算前幾次的運(yùn)算規(guī)律,得出運(yùn)算的周期性,確定跳出循環(huán)時(shí)的n的值,進(jìn)而求解的值,得到答案.【詳解】由題意,,第1次循環(huán),,滿足判斷條件;第2次循環(huán),,滿足判斷條件;第3次循環(huán),,滿足判斷條件;可得的值滿足以3項(xiàng)為周期的計(jì)算規(guī)律,所以當(dāng)時(shí),跳出循環(huán),此時(shí)和時(shí)的值對(duì)應(yīng)的相同,即.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出問(wèn)題,其中解答中認(rèn)真審題,得出程序運(yùn)行時(shí)的計(jì)算規(guī)律是解答的關(guān)鍵,著重考查了推理與計(jì)算能力.7.D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.8.B【解析】

作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過(guò)點(diǎn)時(shí),其截距最大,此時(shí)最大得,當(dāng)時(shí),故選:B【點(diǎn)睛】考查線性規(guī)劃,是基礎(chǔ)題.9.C【解析】

利用代入計(jì)算即可.【詳解】由已知,,因?yàn)殇J角,所以,,即.故選:C.【點(diǎn)睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.10.A【解析】

先將函數(shù)解析式化簡(jiǎn)為,結(jié)合題意可求得切點(diǎn)及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個(gè)公共點(diǎn),結(jié)合圖象知直線與函數(shù)相切于,,因?yàn)?,故,所?故選:A.【點(diǎn)睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點(diǎn)及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.11.A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長(zhǎng)度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見(jiàn)圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對(duì)本題可以利用長(zhǎng)方體,根據(jù)三視圖刪掉沒(méi)有的點(diǎn)與線,屬中檔題.12.D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯(cuò)誤;命題“:,”的否定為:,,故B錯(cuò)誤;為真,說(shuō)明至少一個(gè)為真命題,則不能推出為真;為真,說(shuō)明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯(cuò)誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點(diǎn)睛】本題主要考查了判斷必要不充分條件,寫(xiě)出命題的逆否命題等,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說(shuō)的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.14.【解析】

對(duì)求導(dǎo),再根據(jù)點(diǎn)的坐標(biāo)可得切線方程,令,可得點(diǎn)橫坐標(biāo),由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的切線,難度不大.15.5.【解析】

由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.16.【解析】

,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.故答案為:【點(diǎn)睛】本題考查利用基本不等式求和的最小值問(wèn)題,采用的是“1”的替換,也可以消元等,是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2).【解析】

(1)取的中點(diǎn),連接,通過(guò)證明,即可證得;(2)建立空間直角坐標(biāo)系,利用向量的坐標(biāo)表示即可得解.【詳解】(1)證明:取的中點(diǎn),連接.是的中點(diǎn),,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標(biāo)系.設(shè)平面的法向量為,則,則,?。本€與平面所成角的正弦值為.【點(diǎn)睛】此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準(zhǔn)確計(jì)算.18.(1)證明見(jiàn)解析(2)【解析】

(1)解法一:作的中點(diǎn),連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過(guò)證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計(jì)算出二面角的余弦值.【詳解】(1)法一:作的中點(diǎn),連接,.又為的中點(diǎn),∴為的中位線,∴,又為的中點(diǎn),∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長(zhǎng)方體中,,,兩兩互相垂直,建立空間直角坐標(biāo)系如圖所示,則,,,,,,,,,,,.(1)設(shè)平面的一個(gè)法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設(shè)平面的一個(gè)法向量為,則,令,則,.∴.同理可算得平面的一個(gè)法向量為∴,又由圖可知二面角的平面角為一個(gè)鈍角,故二面角的余弦值為.【點(diǎn)睛】本小題考查線面的位置關(guān)系,空間向量與線面角,二面角等基礎(chǔ)知識(shí),考查空間想象能力,推理論證能力,運(yùn)算求解能力,數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.19.(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】

(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過(guò)原點(diǎn)的直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,求得的表達(dá)式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過(guò)原點(diǎn)的直線的極坐標(biāo)方程為;由得,所以曲線的極坐標(biāo)方程為在曲線中,.由得曲線的極坐標(biāo)方程為,所以而到直線與曲線的交點(diǎn)的距離為,因此,即的最小值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標(biāo)方程化為極坐標(biāo)方程,考查極坐標(biāo)系下距離的有關(guān)計(jì)算,屬于中檔題.20.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論