下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.2.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.3.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.4.函數的對稱軸不可能為()A. B. C. D.5.從5名學生中選出4名分別參加數學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數為A.48 B.72 C.90 D.966.已知函數,則()A. B. C. D.7.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為88.設等差數列的前n項和為,若,則()A. B. C.7 D.29.已知等式成立,則()A.0 B.5 C.7 D.1310.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.11.設數列是等差數列,,.則這個數列的前7項和等于()A.12 B.21 C.24 D.3612.著名的斐波那契數列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.4040二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知函數,則不等式的解集為____________.14.已知,且,則__________.15.若正實數x,y,滿足x+2y=5,則x216.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.18.(12分)已知函數,其中為自然對數的底數.(1)若函數在區(qū)間上是單調函數,試求的取值范圍;(2)若函數在區(qū)間上恰有3個零點,且,求的取值范圍.19.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.20.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.21.(12分)已知函數.(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.22.(10分)已知函數(I)當時,解不等式.(II)若不等式恒成立,求實數的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.2.D【解析】
根據三視圖知,該幾何體是一條垂直于底面的側棱為2的四棱錐,畫出圖形,結合圖形求出底面積代入體積公式求它的體積.【詳解】根據三視圖知,該幾何體是側棱底面的四棱錐,如圖所示:結合圖中數據知,該四棱錐底面為對角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點睛】本題考查由三視圖求幾何體體積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.屬于中等題.3.A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.4.D【解析】
由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.5.D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數原理、排列數與組合數公式等知識,屬于基礎題.6.A【解析】
根據分段函數解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據分段函數解析式求函數值,屬于基礎題.7.D【解析】
由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.8.B【解析】
根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數列的性質及前項和公式,屬于基礎題.9.D【解析】
根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.10.C【解析】
試題分析:將參數a與變量x分離,將不等式恒成立問題轉化為求函數最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題11.B【解析】
根據等差數列的性質可得,由等差數列求和公式可得結果.【詳解】因為數列是等差數列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數列的通項公式,性質,等差數列的和,屬于中檔題.12.D【解析】
計算,代入等式,根據化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數列,意在考查學生的計算能力和應用能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
易知函數的定義域為,且,則是上的偶函數.由于在上單調遞增,而在上也單調遞增,由復合函數的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數,可得,由在上單調遞增,可得,則,解得,故不等式的解集為.14.【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.15.8【解析】
分析:將題中的式子進行整理,將x+1當做一個整體,之后應用已知兩個正數的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結果.詳解:x2-3x+1+2點睛:該題屬于應用基本不等式求最值的問題,解決該題的關鍵是需要對式子進行化簡,轉化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結果.16.【解析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉化為該點到準線的距離,用平面幾何方法求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17..【解析】
根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.18.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內恰有一個零點,轉化為在區(qū)間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數在區(qū)間上單調遞增時,在區(qū)間上恒成立.∴(其中),解得.當函數在區(qū)間上單調遞減時,在區(qū)間上恒成立,∴(其中),解得.綜上所述,實數的取值范圍是.(2).由,知在區(qū)間內恰有一個零點,設該零點為,則在區(qū)間內不單調.∴在區(qū)間內存在零點,同理在區(qū)間內存在零點.∴在區(qū)間內恰有兩個零點.由(1)易知,當時,在區(qū)間上單調遞增,故在區(qū)間內至多有一個零點,不合題意.當時,在區(qū)間上單調遞減,故在區(qū)間內至多有一個零點,不合題意,∴.令,得,∴函數在區(qū)間上單凋遞減,在區(qū)間上單調遞增.記的兩個零點為,∴,必有.由,得.∴又∵,∴.綜上所述,實數的取值范圍為.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、零點問題,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.19.(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.20.另一個特征值為,對應的一個特征向量【解析】
根據特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.【詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設對應的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應的一個特征向量【點睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎題.21.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數的定義域和導數,由已知函數在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數,利用導數求得函數的單調性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數在處取得極值,所以,即,解得,經檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調遞增,最小值為,當時,由得,且,當時,,單調遞減;當時,,單調遞增;所以在區(qū)間上單調遞增,最小值為,當時,則,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區(qū)間上單調遞增,當時,,即,故,即當時,恒有成立.【點睛】本題主要考查導數在函數中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數,利用導數研究函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國綜合空運代理行業(yè)市場行情監(jiān)測及發(fā)展趨向研判報告
- 《突發(fā)事件處理流程》課件
- 國企投資企業(yè)合同模板
- 小區(qū)路燈銷售合同范例
- 商混銷售合同范例
- 實驗檢測工程合同范例
- 工廠購銷蔬菜合同模板
- 產品模具銷售合同范例
- 度銷售代理合同范例
- 介紹居間合同模板
- FZ/T 62033-2016超細纖維毛巾
- 數據安全培訓課件PPT(32張)
- 無量壽經廣釋課件
- 企業(yè)安全文化手冊
- 部編版五年級上冊第七單元教材解讀
- 批創(chuàng)思維導論(答案)
- 五年級上冊英語課件-Unit7 At weekends第四課時|譯林版(三起) (共18張PPT)
- 醫(yī)美行業(yè)商業(yè)計劃書課件
- 慕課《自然辯證法概論》課后習題及期末考試參考答案
- 小學譯林版英語五年級上冊Unit4-Cartoon-time名師課件
- 畢業(yè)設計-裝配流水線PLC控制系統
評論
0/150
提交評論