江蘇省無錫錫東片2023年中考試題猜想數(shù)學(xué)試卷含解析及點睛_第1頁
江蘇省無錫錫東片2023年中考試題猜想數(shù)學(xué)試卷含解析及點睛_第2頁
江蘇省無錫錫東片2023年中考試題猜想數(shù)學(xué)試卷含解析及點睛_第3頁
江蘇省無錫錫東片2023年中考試題猜想數(shù)學(xué)試卷含解析及點睛_第4頁
江蘇省無錫錫東片2023年中考試題猜想數(shù)學(xué)試卷含解析及點睛_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°2.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,43.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為164.tan60°的值是()A. B. C. D.5.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°6.等腰三角形三邊長分別為,且是關(guān)于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或107.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.9.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH10.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π11.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.512.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內(nèi)部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:=_____________.14.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.15.已知二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,且,則________.16.半徑是6cm的圓內(nèi)接正三角形的邊長是_____cm.17.如圖,在直角坐標(biāo)平面xOy中,點A坐標(biāo)為,,,AB與x軸交于點C,那么AC:BC的值為______.18.因式分解:3a3﹣3a=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了了解某校學(xué)生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學(xué)生進行調(diào)查,要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調(diào)查的學(xué)生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學(xué)生,估計該校最喜愛《中國詩詞大會》的學(xué)生有多少名?20.(6分)某商場以每件280元的價格購進一批商品,當(dāng)每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當(dāng)降價的方式促銷,經(jīng)調(diào)查發(fā)現(xiàn),如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應(yīng)降價多少元?21.(6分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.22.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.23.(8分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.24.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現(xiàn):(1)點O到弦AB的距離是,當(dāng)BP經(jīng)過點O時,∠ABA′=;(2)當(dāng)BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時,NA′與半圓O相切,當(dāng)α=°時,點O′落在上.(3)當(dāng)線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.25.(10分)如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當(dāng)CP//AO時,求∠PAC的正切值;(3)當(dāng)以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標(biāo).26.(12分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關(guān)系為:.(探究)如圖1,當(dāng)點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關(guān)系式?并說明理由.(應(yīng)用)如圖3,在平面直角坐標(biāo)系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結(jié)論求出點M的坐標(biāo).27.(12分)(1)計算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡,再求值:÷(2+),其中a=.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.2、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.3、D【解析】

首先寫出所有的組合情況,再進一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時,其周長為3+4+1=13;②當(dāng)x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當(dāng)x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.4、A【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】tan60°=故選:A.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.5、C【解析】分析:依據(jù)AB∥EF,即可得∠BDE=∠E=45°,再根據(jù)∠A=30°,可得∠B=60°,利用三角形外角性質(zhì),即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.6、B【解析】

由題意可知,等腰三角形有兩種情況:當(dāng)a,b為腰時,a=b,由一元二次方程根與系數(shù)的關(guān)系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當(dāng)2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B7、C【解析】

根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.8、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.9、D【解析】

根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到正確的結(jié)論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.10、A【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答.11、B【解析】

由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.12、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關(guān)運算法則是正確解答這類題的關(guān)鍵.14、115°【解析】

根據(jù)過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數(shù),又根據(jù)圓內(nèi)接四邊形對角互補,可以求得∠D的度數(shù),本題得以解決.【詳解】解:連接OC,如右圖所示,

由題意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四邊形ABCD是圓內(nèi)接四邊形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案為:115°.【點睛】本題考查切線的性質(zhì)、圓內(nèi)接四邊形,解題的關(guān)鍵是明確題意,找出所求問題需要的條件.15、-12【解析】

令y=0,得方程,和即為方程的兩根,利用根與系數(shù)的關(guān)系求得和,利用完全平方式并結(jié)合即可求得k的值.【詳解】解:∵二次函數(shù)的圖像與軸交點的橫坐標(biāo)是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數(shù)的關(guān)系,函數(shù)與x軸的交點的橫坐標(biāo)就是方程的根,解題的關(guān)鍵是利用根與系數(shù)的關(guān)系,整體代入求解.16、6【解析】

根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵,根據(jù)圓的內(nèi)接正三角形的特點,求出內(nèi)心到每個頂點的距離,可求出內(nèi)接正三角形的邊長.17、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標(biāo)為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.18、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,進而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)120;(2)

;(3)答案見解析;(4)1650.【解析】

(1)依據(jù)節(jié)目B的數(shù)據(jù),即可得到調(diào)查的學(xué)生人數(shù);(2)依據(jù)A部分的百分比,即可得到A部分所占圓心角的度數(shù);(3)求得C部分的人數(shù),即可將條形統(tǒng)計圖補充完整;(4)依據(jù)喜愛《中國詩詞大會》的學(xué)生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學(xué)生數(shù)量.【詳解】,故答案為120;,故答案為;:,如圖所示:,答:該校最喜愛中國詩詞大會的學(xué)生有1650名.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合思想解答.20、(1)4800元;(2)降價60元.【解析】試題分析:(1)先求出降價前每件商品的利潤,乘以每月銷售的數(shù)量就可以得出每月的總利潤;(2)設(shè)每件商品應(yīng)降價x元,由銷售問題的數(shù)量關(guān)系“每件商品的利潤×商品的銷售數(shù)量=總利潤”列出方程,解方程即可解決問題.試題解析:(1)由題意得60×(360-280)=4800(元).即降價前商場每月銷售該商品的利潤是4800元;(2)設(shè)每件商品應(yīng)降價x元,由題意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于減少庫存,則x=60.即要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應(yīng)降價60元.點睛:本題考查了列一元二次方程解實際問題的銷售問題,解答時根據(jù)銷售問題的數(shù)量關(guān)系建立方程是關(guān)鍵.21、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.22、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質(zhì)即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為23、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點P的坐標(biāo)為(,)時,四邊形ACPB的最大面積值為【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標(biāo),當(dāng)時,即解得(不合題意,舍),∴點P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時,四邊形ABPC的面積最大.當(dāng)m=時,,即P點的坐標(biāo)為當(dāng)點P的坐標(biāo)為時,四邊形ACPB的最大面積值為.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點的縱坐標(biāo),又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).24、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當(dāng)O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時,點O′在半圓上,∴當(dāng)0°<α<30°時點O′在半圓內(nèi),線段NO′與半圓只有一個公共點B;當(dāng)α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當(dāng)α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關(guān)鍵.25、(1)拋物線的表達式為;(2);(3)P點的坐標(biāo)是.【解析】

分析:(1)由題意易得點A、C的坐標(biāo)分別為(-1,0),(0,1),將這兩點坐標(biāo)代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結(jié)合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結(jié)合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當(dāng)四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關(guān)于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標(biāo)為-3,代入拋物線解析即可求得此時的點P的坐標(biāo).詳解:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論