版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為()A.7 B.8 C.9 D.102.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數軸上可表示為()A. B.C. D.3.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm24.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.165.是兩個連續(xù)整數,若,則分別是().A.2,3 B.3,2 C.3,4 D.6,86.△ABC在網絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.7.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變8.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間9.下列說法:①-102②數軸上的點與實數成一一對應關系;③﹣2是16的平方根;④任何實數不是有理數就是無理數;⑤兩個無理數的和還是無理數;⑥無理數都是無限小數,其中正確的個數有()A.2個 B.3個 C.4個 D.5個10.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規(guī)律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.12.反比例函數y=與正比例函數y=k2x的圖象的一個交點為(2,m),則=____.13.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.14.已知,如圖,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,則AC=.15.若一個等腰三角形的周長為26,一邊長為6,則它的腰長為____.16.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當A′E⊥AC時,A′B=____.17.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.三、解答題(共7小題,滿分69分)18.(10分)已知反比例函數的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).19.(5分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.20.(8分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).求一次函數與反比例函數的解析式;在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.21.(10分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?22.(10分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結果保留根號和π)23.(12分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數據的平均數、眾數和中位數;(Ⅲ)根據樣本數據,估計這2500只雞中,質量為的約有多少只?24.(14分)若一個三位數的十位數字比個位數字和百位數字都大,則稱這個數為“傘數”.現從1,2,3,4這四個數字中任取3個數,組成無重復數字的三位數.(1)請畫出樹狀圖并寫出所有可能得到的三位數;(2)甲、乙二人玩一個游戲,游戲規(guī)則是:若組成的三位數是“傘數”,則甲勝;否則乙勝.你認為這個游戲公平嗎?試說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.2、B【解析】
根據第二象限中點的特征可得:,解得:.在數軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征3、C【解析】
先根據三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.4、B【解析】
根據矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.5、A【解析】
根據,可得答案.【詳解】根據題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數的大小,明確是解題關鍵.6、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.7、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數以及每列正方形的個數是解決本題的關鍵.8、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.9、C【解析】
根據平方根,數軸,有理數的分類逐一分析即可.【詳解】①∵-102=10,∴②數軸上的點與實數成一一對應關系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數不是有理數就是無理數,故說法正確;⑤兩個無理數的和還是無理數,如2和-2⑥無理數都是無限小數,故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數的分類,數軸及平方根的概念,有理數都可以化為小數,其中整數可以看作小數點后面是零的小數,分數可以化為有限小數或無限循環(huán)小數;無理數是無限不循環(huán)小數,其中有開方開不盡的數,如2,10、B【解析】
根據等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結論.【詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【點睛】本題考查了等腰三角形兩底角相等的性質,圖形的變化規(guī)律,依次求出相鄰的兩個角的差,得到分母成2的指數次冪變化,分子不變的規(guī)律是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
由矩形的性質可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質和折疊的性質可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質,勾股定理,利用勾股定理求AF的長是本題的關鍵.12、4【解析】
利用交點(2,m)同時滿足在正比例函數和反比例函數上,分別得出m和、的關系.【詳解】把點(2,m)代入反比例函數和正比例函數中得,,,則.【點睛】本題主要考查了函數的交點問題和待定系數法,熟練掌握待定系數法是本題的解題關鍵.13、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.14、1【解析】試題分析:根據DE∥FG∥BC可得△ADE∽△AFG∽ABC,根據題意可得EG:AC=DF:AB=2:6=1:3,根據EG=3,則AC=1.考點:三角形相似的應用.15、1【解析】
題中給出了周長和一邊長,而沒有指明這邊是否為腰長,則應該分兩種情況進行分析求解.【詳解】①當6為腰長時,則腰長為6,底邊=26-6-6=14,因為14>6+6,所以不能構成三角形;②當6為底邊時,則腰長=(26-6)÷2=1,因為6-6<1<6+6,所以能構成三角形;故腰長為1.故答案為:1.【點睛】此題主要考查等腰三角形的性質及三角形三邊關系的綜合運用,關鍵是利用三角形三邊關系進行檢驗.16、或7【解析】
分兩種情況:①如圖1,作輔助線,構建矩形,先由勾股定理求斜邊AB=10,由中點的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據同角的三角函數列式可以求DG和DF的長,并由翻折的性質得:∠DA'E=∠A,A'D=AD=5,由矩形性質和勾股定理可以得出結論:A'B=;②如圖2,作輔助線,構建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點睛】本題主要考查三角形翻轉后的性質,注意不同的情況需分情況討論.17、1【解析】
利用對稱性可設出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數與正方形和三角形面積的運用,表示出E和F的坐標是關鍵.三、解答題(共7小題,滿分69分)18、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據反比例函數的圖象經過點A(﹣4,﹣3),利用待定系數法求出反比例函數的解析式為y=12x,再由反比例函數圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據y1﹣y2(2)設BD與x軸交于點E.根據三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數的解析式為y=kx∵反比例函數的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數的解析式為y=12x∵反比例函數的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數法求反比例函數的解析式,反比例函數圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.19、(1)證明見解析;(2)BH=125【解析】
(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根據勾股定理得,AF=5,∵S△ABF=12AB?BF=1∴AB?BF=AF?BH,∴4×3=5BH,∴BH=125【點睛】此題主要考查了切線的判定和性質,三角形中位線的判定和性質,相似三角形的判定和性質,求出BF=3是解本題的關鍵.20、(1)反比例函數的解析式為;一次函數的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數方程,再聯立將B點代入即可求出一次函數方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數圖像與性質和反比例函數的圖像和性質,解題的關鍵是待定系數法,分三種情況討論.21、(1)t=秒;(1)t=5﹣(s).【解析】
(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據三角形的面積公式列出方程求解即可.【詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故當t=5﹣(s)時,△APQ的面積為8cm1.【點睛】本題主要考查了相似三角形的判定與性質、銳角三角函數、三角形的面積以及一元二次方程的應用能力,分類討論是解題的關鍵.22、(1)證明見解析;(2);【解析】
(1)連接OD,先根據切線的性質得到∠CDO=90°,再根據平行線的性質得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據全等三角形的判定與性質得到∠CAO=∠CDO=90°,根據切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《山西康莊項目提案》課件
- 復習真題卷01 第1-2單元 (解析版)
- 《電子測量技術》課件
- 來鳳縣舊司鄉(xiāng)中心衛(wèi)生院配套設施建設可研報告
- 《家庭倫理劇》課件
- 2014年高考語文試卷(山東)(空白卷)
- 《紅巖》課件(中考名著)
- 美容美發(fā)服務銷售心得
- 2023年-2024年員工三級安全培訓考試題附答案(奪分金卷)
- 2023-2024年項目部治理人員安全培訓考試題附下載答案
- 精神病院感染管理
- 地震應急演練實施方案村委會(2篇)
- 2024時事政治試題庫學生專用
- 三級合伙人制度
- 2024年湖北省黃石市黃石港區(qū)政府雇員招聘37人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 礦業(yè)施工組織設計方案
- 椎體感染的護理查房
- 產后飲食的健康宣教-課件
- 兒科案例完整-川崎病課件
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗收規(guī)范(暫行)
- 電子行業(yè)認證行業(yè)深度研究報告
評論
0/150
提交評論