版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過(guò)程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小2.在下列二次函數(shù)中,其圖象的對(duì)稱軸為的是A. B. C. D.3.在一個(gè)不透明的口袋中裝有4個(gè)紅球和若干個(gè)白球,他們除顏色外其他完全相同.通過(guò)多次摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個(gè) B.15個(gè) C.13個(gè) D.12個(gè)4.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等 B.三條邊對(duì)應(yīng)相等C.兩邊和它們的夾角對(duì)應(yīng)相等 D.三個(gè)角對(duì)應(yīng)相等5.如圖,矩形ABCD中,AB=8,BC=1.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是()A.2 B.3 C.5 D.66.下列四個(gè)圖形中,是中心對(duì)稱圖形的是()A. B. C. D.7.某春季田徑運(yùn)動(dòng)會(huì)上,參加男子跳高的15名運(yùn)動(dòng)員的成績(jī)?nèi)缦卤硭荆撼煽?jī)?nèi)藬?shù)這些運(yùn)動(dòng)員跳高成績(jī)的中位數(shù)是()A. B. C. D.8.如圖,直線l1∥l2,以直線l1上的點(diǎn)A為圓心、適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交直線l1、l2于點(diǎn)B、C,連接AC、BC.若∠ABC=67°,則∠1=()A.23° B.46° C.67° D.78°9.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣10.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若點(diǎn)(,1)與(﹣2,b)關(guān)于原點(diǎn)對(duì)稱,則=_______.12.因式分解:x2﹣10x+24=_____.13.如圖所示,過(guò)y軸正半軸上的任意一點(diǎn)P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點(diǎn)A和點(diǎn)B,若點(diǎn)C是x軸上任意一點(diǎn),連接AC、BC,則△ABC的面積為_(kāi)________.14.如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)F處;過(guò)點(diǎn)P作∠BPF的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()15.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為_(kāi)_______.16.拋物線y=2x2+3x+k﹣2經(jīng)過(guò)點(diǎn)(﹣1,0),那么k=_____.三、解答題(共8題,共72分)17.(8分)小方與同學(xué)一起去郊游,看到一棵大樹(shù)斜靠在一小土坡上,他想知道樹(shù)有多長(zhǎng),于是他借來(lái)測(cè)角儀和卷尺.如圖,他在點(diǎn)C處測(cè)得樹(shù)AB頂端A的仰角為30°,沿著CB方向向大樹(shù)行進(jìn)10米到達(dá)點(diǎn)D,測(cè)得樹(shù)AB頂端A的仰角為45°,又測(cè)得樹(shù)AB傾斜角∠1=75°.(1)求AD的長(zhǎng).(2)求樹(shù)長(zhǎng)AB.18.(8分)如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長(zhǎng).19.(8分)已知拋物線y=﹣x2﹣4x+c經(jīng)過(guò)點(diǎn)A(2,0).(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)若點(diǎn)B(m,n)是拋物線上的一動(dòng)點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C.①若B、C都在拋物線上,求m的值;②若點(diǎn)C在第四象限,當(dāng)AC2的值最小時(shí),求m的值.20.(8分)如圖,某游樂(lè)園有一個(gè)滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)21.(8分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書(shū)畫(huà)作品.九年級(jí)美術(shù)王老師從全年級(jí)14個(gè)班中隨機(jī)抽取了4個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個(gè)班征集到作品共件,其中b班征集到作品件,請(qǐng)把圖2補(bǔ)充完整;王老師所調(diào)查的四個(gè)班平均每個(gè)班征集作品多少件?請(qǐng)估計(jì)全年級(jí)共征集到作品多少件?如果全年級(jí)參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)??偨Y(jié)表彰座談會(huì),請(qǐng)直接寫(xiě)出恰好抽中一男一女的概率.22.(10分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫(xiě)出d與t的關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).23.(12分)某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的電腦,已知購(gòu)買一臺(tái)A型電腦需0.6萬(wàn)元,購(gòu)買一臺(tái)B型電腦需0.4萬(wàn)元,該公司準(zhǔn)備投入資金y萬(wàn)元,全部用于購(gòu)進(jìn)35臺(tái)這兩種型號(hào)的電腦,設(shè)購(gòu)進(jìn)A型電腦x臺(tái).(1)求y關(guān)于x的函數(shù)解析式;(2)若購(gòu)進(jìn)B型電腦的數(shù)量不超過(guò)A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬(wàn)元?24.解不等式組:并求它的整數(shù)解的和.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】如圖所示,連接CM,∵M(jìn)是AB的中點(diǎn),∴S△ACM=S△BCM=S△ABC,開(kāi)始時(shí),S△MPQ=S△ACM=S△ABC;由于P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn),從而點(diǎn)P到達(dá)AC的中點(diǎn)時(shí),點(diǎn)Q也到達(dá)BC的中點(diǎn),此時(shí),S△MPQ=S△ABC;結(jié)束時(shí),S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.2、A【解析】y=(x+2)2的對(duì)稱軸為x=–2,A正確;y=2x2–2的對(duì)稱軸為x=0,B錯(cuò)誤;y=–2x2–2的對(duì)稱軸為x=0,C錯(cuò)誤;y=2(x–2)2的對(duì)稱軸為x=2,D錯(cuò)誤.故選A.1.3、D【解析】
由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進(jìn)而求出白球個(gè)數(shù)即可.【詳解】解:設(shè)白球個(gè)數(shù)為:x個(gè),
∵摸到紅色球的頻率穩(wěn)定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴,
解得:x=12,
經(jīng)檢驗(yàn)x=12是原方程的根,
故白球的個(gè)數(shù)為12個(gè).
故選:D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,根據(jù)大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率得出是解題的關(guān)鍵.4、D【解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒(méi)有相對(duì)應(yīng)的判定方法,不能由此判定三角形全等;故選D.5、C【解析】試題分析:連接EF交AC于點(diǎn)M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點(diǎn):菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).6、D【解析】試題分析:根據(jù)中心對(duì)稱圖形的定義,結(jié)合選項(xiàng)所給圖形進(jìn)行判斷即可.解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是中心對(duì)稱圖形,故本選項(xiàng)正確;故選D.考點(diǎn):中心對(duì)稱圖形.7、C【解析】
根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個(gè)數(shù)中,處于中間位置的第8個(gè)數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運(yùn)動(dòng)員跳高成績(jī)的中位數(shù)是1.1.
故選:C.【點(diǎn)睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).8、B【解析】
根據(jù)圓的半徑相等可知AB=AC,由等邊對(duì)等角求出∠ACB,再由平行得內(nèi)錯(cuò)角相等,最后由平角180°可求出∠1.【詳解】根據(jù)題意得:AB=AC,∴∠ACB=∠ABC=67°,∵直線l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46o.故選B.【點(diǎn)睛】本題考查等腰三角形的性質(zhì),平行線的性質(zhì),熟練根據(jù)這些性質(zhì)得到角之間的關(guān)系是關(guān)鍵.9、D【解析】
根據(jù)合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則進(jìn)行計(jì)算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯(cuò)誤;B:x8÷x2=x8-2=x6,故B錯(cuò)誤;C:=,故C錯(cuò)誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、同底數(shù)冪的除法法則、分?jǐn)?shù)指數(shù)運(yùn)算法則、冪的乘方法則.其中指數(shù)為分?jǐn)?shù)的情況在初中階段很少出現(xiàn).10、B【解析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點(diǎn)睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】
∵點(diǎn)(a,1)與(﹣2,b)關(guān)于原點(diǎn)對(duì)稱,∴b=﹣1,a=2,∴==.故答案為.考點(diǎn):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).12、(x﹣4)(x﹣6)【解析】
因?yàn)?-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【點(diǎn)睛】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關(guān)鍵.13、1.【解析】
設(shè)P(0,b),∵直線APB∥x軸,∴A,B兩點(diǎn)的縱坐標(biāo)都為b,而點(diǎn)A在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=-,即A點(diǎn)坐標(biāo)為(-,b),又∵點(diǎn)B在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=,即B點(diǎn)坐標(biāo)為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.14、C【解析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點(diǎn):1.折疊問(wèn)題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.15、1-1.【解析】
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過(guò)解直角三角形求出BC的長(zhǎng)度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過(guò)勾股定理找出方程是解題的關(guān)鍵.16、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.三、解答題(共8題,共72分)17、(1);(2).【解析】試題分析:(1)過(guò)點(diǎn)A作AE⊥CB于點(diǎn)E,設(shè)AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)過(guò)點(diǎn)B作BF⊥AC于點(diǎn)F,設(shè)BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長(zhǎng)度.試題解析:(1)如圖,過(guò)A作AH⊥CB于H,設(shè)AH=x,CH=x,DH=x.∵CH―DH=CD,∴x―x=10,∴x=.∵∠ADH=45°,∴AD=x=.(2)如圖,過(guò)B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.設(shè)MB=m,∴AB=2m,AM=m,DM=m.∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.18、(1)證明見(jiàn)解析(2)【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【點(diǎn)睛】本題考核知識(shí)點(diǎn):切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點(diǎn):由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.19、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點(diǎn)A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點(diǎn)坐標(biāo)即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C,可得點(diǎn)C的坐標(biāo)為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點(diǎn)C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點(diǎn)坐標(biāo)為(﹣2,16),即可得0<n≤16,因?yàn)辄c(diǎn)B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當(dāng)n=時(shí),AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經(jīng)過(guò)點(diǎn)A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵點(diǎn)C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵拋物線頂點(diǎn)坐標(biāo)為(﹣2,16),∴0<n≤16,∵點(diǎn)B在拋物線上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,當(dāng)n=時(shí),AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合題意,舍去,則m的值為.點(diǎn)睛:本題是二次函數(shù)綜合題,第(1)問(wèn)較為簡(jiǎn)單,第(2)問(wèn)根據(jù)點(diǎn)B(m,n)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)C(-m,-n)均在二次函數(shù)的圖象上,代入后即可求出m的值即可;(3)確定出AC2與n之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得當(dāng)n=時(shí),AC2有最小值,在解方程求得m的值即可.20、調(diào)整后的滑梯AD比原滑梯AB增加2.5米【解析】試題分析:Rt△ABD中,根據(jù)30°的角所對(duì)的直角邊是斜邊的一半得到AD的長(zhǎng),然后在Rt△ABC中,求得AB的長(zhǎng)后用即可求得增加的長(zhǎng)度.試題解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD?AB=6?3.53≈2.5(m).∴調(diào)整后的滑梯AD比原滑梯AB增加2.5米.21、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個(gè)班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進(jìn)行計(jì)算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個(gè)班的作品件數(shù),然后乘以班級(jí)數(shù)14,計(jì)算即可得解;(3)畫(huà)出樹(shù)狀圖或列出圖表,再根據(jù)概率公式列式進(jìn)行計(jì)算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個(gè)班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補(bǔ)充完整如下:(2)王老師所調(diào)查的四個(gè)班平均每個(gè)班征集作品=12÷4=3(件),所以,估計(jì)全年級(jí)征集到參展作品:3×14=42(件);(3)畫(huà)樹(shù)狀圖如下:列表如下:共有20種機(jī)會(huì)均等的結(jié)果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.用樣本估計(jì)總體;3.扇形統(tǒng)計(jì)圖;4.列表法與樹(shù)狀圖法;5.圖表型.22、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時(shí),y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度國(guó)際貿(mào)易物流運(yùn)輸合同3篇
- 2024年城市綜合體停車場(chǎng)租賃管理服務(wù)協(xié)議2篇
- 洛陽(yáng)文化旅游職業(yè)學(xué)院《框架開(kāi)發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 洛陽(yáng)商業(yè)職業(yè)學(xué)院《素描4(油畫(huà)方向)》2023-2024學(xué)年第一學(xué)期期末試卷
- 影視項(xiàng)目部攝影師聘用合同
- 2024年太陽(yáng)能光伏發(fā)電項(xiàng)目電力設(shè)施遷移與接入合同3篇
- 清潔公司精裝房施工合同
- 2024年某科技公司關(guān)于云計(jì)算服務(wù)提供合同
- 2025泥工包工合同范文
- 市場(chǎng)研究保密風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2024年度短視頻內(nèi)容創(chuàng)作服務(wù)合同3篇
- 2024年度拼多多店鋪托管經(jīng)營(yíng)合同2篇
- 2023年北京腫瘤醫(yī)院(含社會(huì)人員)招聘筆試真題
- 能源管理總結(jié)報(bào)告
- 2024年時(shí)事政治試題庫(kù)
- 2024-2025學(xué)年統(tǒng)編版五年級(jí)語(yǔ)文上冊(cè)第七單元達(dá)標(biāo)檢測(cè)卷(原卷+答案)
- 人教版七年級(jí)語(yǔ)文上冊(cè)《課內(nèi)文言文基礎(chǔ)知識(shí) 》專項(xiàng)測(cè)試卷及答案
- 【初中數(shù)學(xué)】基本平面圖形單元測(cè)試 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)
- 旅行社分店加盟協(xié)議書(shū)(2篇)
- 城鎮(zhèn)燃?xì)饨?jīng)營(yíng)安全重大隱患判定及燃?xì)獍踩芾韺n}培訓(xùn)
- 個(gè)人和企業(yè)間資金拆借合同
評(píng)論
0/150
提交評(píng)論