![2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析_第1頁](http://file4.renrendoc.com/view/24a1d873a734821987c27d36ec094ae3/24a1d873a734821987c27d36ec094ae31.gif)
![2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析_第2頁](http://file4.renrendoc.com/view/24a1d873a734821987c27d36ec094ae3/24a1d873a734821987c27d36ec094ae32.gif)
![2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析_第3頁](http://file4.renrendoc.com/view/24a1d873a734821987c27d36ec094ae3/24a1d873a734821987c27d36ec094ae33.gif)
![2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析_第4頁](http://file4.renrendoc.com/view/24a1d873a734821987c27d36ec094ae3/24a1d873a734821987c27d36ec094ae34.gif)
![2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析_第5頁](http://file4.renrendoc.com/view/24a1d873a734821987c27d36ec094ae3/24a1d873a734821987c27d36ec094ae35.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學(xué)年四川省資陽市臨江高級職業(yè)中學(xué)高三數(shù)學(xué)文期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-3)=0,則x·f(x)>0的解集是()
A.{x|-3<x<0,或x>3}
B.{x|x<-3,或0<x<3}C.{x|x<-3,或x>3}
D.{x|-3<x<0,或0<x<3}參考答案:C2.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=,f(x+2)=f(x)+f(2),則f(5)=
(A)0
(B)1
(C)
(D)5
參考答案:C略3.函數(shù)y=sin2x的圖象向右平移個單位,得到的圖象關(guān)于直線對稱,則的最小值為
A.
B.
C.
D.參考答案:A4.已知正方體ABCD﹣A1B1C1D1的棱長為1,E是棱D1C1的中點,點F在正方體內(nèi)部或正方體的表面上,若EF∥平面A1BC1,則動點F的軌跡所形成的區(qū)域面積是()A. B. C. D.參考答案:C【考點】L2:棱柱的結(jié)構(gòu)特征.【分析】分別取棱CC1、BC、AB、AA1、A1D1的中點M、N、G、Q、P,推導(dǎo)出平面EMNGQP∥平面A1BC1,從而動點F的軌跡所形成的區(qū)域是平面EMNGQP,由此能求出動點F的軌跡所形成的區(qū)域面積.【解答】解:如圖,分別取棱CC1、BC、AB、AA1、A1D1的中點M、N、G、Q、P,則PE∥A1C1∥GN,EM∥A1B∥GQ,PQ∥BC1∥MN,∴平面EMNGQP∥平面A1BC1,∵點F在正方體內(nèi)部或正方體的表面上,若EF∥平面A1BC1,∴動點F的軌跡所形成的區(qū)域是平面EMNGQP,∵正方體ABCD﹣A1B1C1D1的棱長為1,∴PE=EM=MN=NG=GQ=PQ=,PN=,∴E到PN的距離d==,∴動點F的軌跡所形成的區(qū)域面積:S=2S梯形PNME=2×=.故選:C.5.已知α,β,γ是三個不同的平面,命題“α∥β,且α⊥γ?β⊥γ”是真命題,如果把α,β,γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題有
()A.0個 B.1個
C.2個
D.3個參考答案:B6.設(shè)函數(shù)在區(qū)間(0,2)上有兩個極值點,則a的取值范圍是()A.
B.
C.
D.參考答案:D由題意得,在區(qū)間上有兩個不等的實根,即在區(qū)間上有兩個實根.設(shè),則,易知當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,則又,當(dāng)時,,所以故選D.7.已知棱長為1的正方體ABCDA1B1C1D1中,P,Q是面對角線A1C1上的兩個不同動點.則以下結(jié)論不成立的是
(
)A.存在P,Q兩點,使BPDQ;B存在P,Q兩點,使BP,DQ與直線B1C都成450的角;C若|PQ|=1,則四面體BDPQ的體積一定是定值;D.若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值.參考答案:B8.如圖所示,△DEF中,已知DE=DF,點M在直線EF上從左到右運動(點M不與E、F重合),對于M的每一個位置(x,0),記△DEM的外接圓面積與△DMF的外接圓面積的比值為f(x),那么函數(shù)y=f(x)的大致圖象為()A. B. C. D.參考答案:C【考點】函數(shù)的圖象.【分析】設(shè)△DEM的外接圓半徑為R1,△DMF的外接圓半徑為R2,根據(jù)正弦定理可得R1=R2,即可:f(x)=1,圖象得以判斷.【解答】解:設(shè)△DEM的外接圓半徑為R1,△DMF的外接圓半徑為R2,則由題意,=f(x),點M在直線EF上從左到右運動(點M不與E、F重合),對于M的每一個位置,由正弦定理可得:R1=,R2=?,又DE=DF,sin∠DME=sin∠DMF,可得:R1=R2,可得:f(x)=1,故選:C.9.若A為不等式組表示的平面區(qū)域,則當(dāng)從變化到1時,動直線掃過A中的那部分區(qū)域的面積為;
A.
B.1
C.
D.2參考答案:C【解析】當(dāng)從變化到1時,動直線掃過A中的那部分區(qū)域如圖中的陰影部分,顯然,這部分面積大于1而小于2,故選C。10.已知F1,F(xiàn)2分別為雙曲線的左、右焦點,M為雙曲線右支上一點且滿足,若直線MF2與雙曲線的另一個交點為N,則的面積為A.12 B. C.24 D.參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.若實數(shù)x,y滿足,則目標(biāo)函數(shù)的最小值為
▲
.參考答案:作可行域如圖,則直線過點A時取最小值
12.已知正四棱柱ABCD—A1B1C1D1的底面ABCD邊長為1,高AA1=,它的八個頂點都在同一球面上,那么球的半徑是
;A,B兩點的球面距離為
.參考答案:答案:1,
13.已知集合,,則.參考答案:因為,所以。14.以下命題:①若則∥;②在方向上的投影為;③若△中,則;④若非零向量、滿足,則.⑤已知△ABC中,則向量所在直線必過N點。其中所有真命題的序號是_____________.參考答案:①②④⑤略15.定義在-1,1上的奇函數(shù)f(x)是減函數(shù),且f(1-a)+f(1-a2)>0,求實數(shù)a的取值范圍。參考答案:f(1-a)+f(1-a2)>0,得:f(1-a)>f(a2-1),
1<a≤16.將一顆質(zhì)地均勻的正四面體骰子(每個面上分別寫有數(shù)字1,2,3,4)先后拋擲2次,觀察其朝下一面的數(shù)字,則兩次數(shù)字之和等于6的概率為
.參考答案:兩次數(shù)字之和等于有三種基本事件,所以概率為
17.在△ABC內(nèi)角A,B,C的對邊分別是a,b,c,cos=,且acosB+bcosA=2,則△ABC的面積的最大值為.參考答案:【考點】正弦定理.【分析】所求的式子cosC利用二倍角的余弦函數(shù)公式化簡后,將已知的cos的值代入即可求出cosC值,利用余弦定理分別表示出cosB和cosA,代入到已知的等式中,化簡后即可求出c的值,然后利用余弦定理表示出c2=a2+b2﹣2abcosC,把c及cosC的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,利用三角形的面積公式表示出三角形ABC的面積,把ab的最大值及sinC的值代入即可求出面積的最大值.【解答】(本題滿分為14分)解:∵cos=,∴cosC=2cos2﹣1=2()2﹣1=;…∵acosB+bcosA=2,∴a×+b×=2,∴c=2,…∴4=a2+b2﹣2ab×≥2ab﹣2ab×=ab,∴ab≤(當(dāng)且僅當(dāng)a=b=時等號成立)…由cosC=,得sinC=…∴S△ABC=absinC≤××=,故△ABC的面積最大值為…三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本題12分)已知偶函數(shù)滿足:當(dāng)時,,當(dāng)時,(1)求當(dāng)時,的表達式;(2)試討論:當(dāng)實數(shù)滿足什么條件時,函數(shù)有4個零點,且這4個零點從小到大依次構(gòu)成等差數(shù)列.參考答案:解:(1)設(shè)則,又偶函數(shù)
所以,
………3分(2)零點,與交點有4個且均勻分布(Ⅰ)時,
得,所以時,
…………5分(Ⅱ)且時,
,
所以時,………7分(Ⅲ)時m=1時
符合題意………8分(IV)時,,,m此時所以(舍)且時,時存在
………10分綜上:
①時,
②時,③時,符合題意
………12分19.如圖,在直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.(1)證明:AD⊥C1E;(2)當(dāng)異面直線AC,C1E所成的角為60°時,求三棱錐C1—A1B1E的體積.
參考答案:(1)∵AB=AC,D是BC的中點,∴AD⊥BC又在直三棱柱ABC—A1B1C1中,BB1⊥平面ABC,AD平面ABC∴AD⊥BB1故AD⊥平面BB1C1C由點E在棱BB1上運動,得C1E平面BB1C1C∴AD⊥C1E(2)∵AC∥A1C1,∴∠A1C1E是異面直線AC、C1E所成的角由題設(shè)∠A1C1E=60°,∵∠B1A1C1=∠BAC=90°∴A1C1⊥A1B1,又AA1⊥A1C1從而A1C1⊥平面A1ABB1,于是A1C1⊥A1E故C1E=
又∴∴×A1C1=
略20.(本小題滿分10分)選修4-1:幾何證明選講如圖,已知圓上的,過C點的圓的切線與BA的延長線交于E點.
(Ⅰ)求證:∠ACE=∠BCD;
(Ⅱ)若BE=9,CD=1,求BC的長. 參考答案:(Ⅰ).………………(2分)又為圓的切線,.……………(5分)(Ⅱ)為圓的切線,∴,由(Ⅰ)可得,……(7分)∴△∽△,∴,∴=3.……(10分)21.不等式選講已知a,b都是正實數(shù),且(I)求證:;
(II)求的最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電子書閱讀器項目可行性研究報告
- 2025至2031年中國獨立收線機行業(yè)投資前景及策略咨詢研究報告
- 2025年機車空調(diào)電源整機測試儀項目可行性研究報告
- 2025年室內(nèi)型溫度傳感器/變送器項目可行性研究報告
- 2025至2031年中國剛性防水干混砂漿行業(yè)投資前景及策略咨詢研究報告
- 2025年沖浪板項目可行性研究報告
- 2025年上嘴過濾瓶項目可行性研究報告
- 2025至2030年高光水性高耐磨上光油項目投資價值分析報告
- 2025至2030年金屬瓷牙項目投資價值分析報告
- 2025至2030年耐磨高錳鋼軋臼壁項目投資價值分析報告
- 消防器材與消防設(shè)施的維護與檢查
- 【理特咨詢】2024生成式人工智能GenAI在生物醫(yī)藥大健康行業(yè)應(yīng)用進展報告
- 2025年中國中煤能源股份有限公司招聘筆試參考題庫含答案解析
- 2024年度碳陶剎車盤分析報告
- 2025年春新外研版(三起)英語三年級下冊課件 Unit6第1課時Startup
- 2025年1月 浙江首考英語試卷
- 十首最美的唐詩
- 2024年中考二輪專題復(fù)習(xí)道德與法治主觀題答題技巧(小論文)之演講稿
- 質(zhì)檢工作計劃書2025質(zhì)檢部工作計劃范文
- 施工現(xiàn)場5S管理規(guī)范
- 《纏論的實戰(zhàn)技法》課件
評論
0/150
提交評論