版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MachineLearning:
findingpatternsOutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka2FindingpatternsGoal:programsthatdetectpatternsandregularitiesinthedataStrongpatternsgoodpredictionsProblem1:mostpatternsarenotinterestingProblem2:patternsmaybeinexact(or spurious)Problem3:datamaybegarbledormissing3MachinelearningtechniquesAlgorithmsforacquiringstructuraldescriptionsfromexamplesStructuraldescriptionsrepresentpatternsexplicitlyCanbeusedtopredictoutcomeinnewsituationCanbeusedtounderstandandexplainhowpredictionisderived
(maybeevenmoreimportant)Methodsoriginatefromartificialintelligence,statistics,andresearchondatabaseswitten&eibe4Canmachinesreallylearn?Definitionsof“l(fā)earning”fromdictionary:Togetknowledgeofbystudy,
experience,orbeingtaughtTobecomeawarebyinformationor
fromobservationTocommittomemoryTobeinformedof,ascertain;toreceiveinstructionDifficulttomeasureTrivialforcomputersThingslearnwhentheychangetheirbehaviorinawaythatmakesthemperformbetterinthefuture.Operationaldefinition:Doesaslipperlearn?Doeslearningimplyintention?witten&eibe5ClassificationLearnamethodforpredictingtheinstanceclassfrompre-labeled(classified)instancesManyapproaches:Regression,DecisionTrees,Bayesian,NeuralNetworks,...Givenasetofpointsfromclasseswhatistheclassofnewpoint?6Classification:LinearRegressionLinearRegressionw0+w1x+w2y>=0Regressioncomputeswifromdatatominimizesquarederrorto‘fit’thedataNotflexibleenough7Classification:DecisionTreesXYifX>5thenblueelseifY>3thenblueelseifX>2thengreenelseblue5238Classification:NeuralNetsCanselectmorecomplexregionsCanbemoreaccurateAlsocanoverfitthedata–findpatternsinrandomnoise9OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka10TheweatherproblemOutlookTemperatureHumidityWindyPlaysunnyhothighfalsenosunnyhothightruenoovercasthothighfalseyesrainymildhighfalseyesrainymildnormalfalseyesrainymildnormaltruenoovercastmildnormaltrueyessunnymildhighfalsenosunnymildnormalfalseyesrainymildnormalfalseyessunnymildnormaltrueyesovercastmildhightrueyesovercasthotnormalfalseyesrainymildhightruenoGivenpastdata,CanyoucomeupwiththerulesforPlay/NotPlay?Whatisthegame?11The
weatherproblemGiventhisdata,whataretherulesforplay/notplay?OutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………12The
weatherproblemConditionsforplayingOutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………Ifoutlook=sunnyandhumidity=highthenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity=normalthenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe13WeatherdatawithmixedattributesOutlookTemperatureHumidityWindyPlaysunny8585falsenosunny8090truenoovercast8386falseyesrainy7096falseyesrainy6880falseyesrainy6570truenoovercast6465trueyessunny7295falsenosunny6970falseyesrainy7580falseyessunny7570trueyesovercast7290trueyesovercast8175falseyesrainy7191trueno14WeatherdatawithmixedattributesHowwilltheruleschangewhensomeattributeshavenumericvalues?OutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………15WeatherdatawithmixedattributesRuleswithmixedattributesOutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………Ifoutlook=sunnyandhumidity>83thenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity<85thenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe16ThecontactlensesdataAgeSpectacleprescriptionAstigmatismTearproductionrateRecommendedlensesYoungMyopeNoReducedNoneYoungMyopeNoNormalSoftYoungMyopeYesReducedNoneYoungMyopeYesNormalHardYoungHypermetropeNoReducedNoneYoungHypermetropeNoNormalSoftYoungHypermetropeYesReducedNoneYoungHypermetropeYesNormalhardPre-presbyopicMyopeNoReducedNonePre-presbyopicMyopeNoNormalSoftPre-presbyopicMyopeYesReducedNonePre-presbyopicMyopeYesNormalHardPre-presbyopicHypermetropeNoReducedNonePre-presbyopicHypermetropeNoNormalSoftPre-presbyopicHypermetropeYesReducedNonePre-presbyopicHypermetropeYesNormalNonePresbyopicMyopeNoReducedNonePresbyopicMyopeNoNormalNonePresbyopicMyopeYesReducedNonePresbyopicMyopeYesNormalHardPresbyopicHypermetropeNoReducedNonePresbyopicHypermetropeNoNormalSoftPresbyopicHypermetropeYesReducedNonePresbyopicHypermetropeYesNormalNonewitten&eibe17AcompleteandcorrectrulesetIftearproductionrate=reducedthenrecommendation=noneIfage=youngandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=pre-presbyopicandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=presbyopicandspectacleprescription=myope
andastigmatic=nothenrecommendation=noneIfspectacleprescription=hypermetropeandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfspectacleprescription=myopeandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfageyoungandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfage=pre-presbyopic
andspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=noneIfage=presbyopicandspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=nonewitten&eibe18Adecisiontreeforthisproblemwitten&eibe19ClassifyingirisflowersSepallengthSepalwidthPetallengthPetalwidthType0.2Irissetosa24.93.01.40.2Irissetosa…517.0Irisversicolor51.5Irisversicolor…102.5Irisvirginica101.9Irisvirginica…Ifpetallength<2.45thenIrissetosaIfsepalwidth<2.10thenIrisversicolor...witten&eibe20Example:209differentcomputerconfigurationsLinearregressionfunctionPredictingCPUperformanceCycletime(ns)Mainmemory(Kb)Cache(Kb)ChannelsPerformanceMYCTMMINMMAXCACHCHMINCHMAXPRP112525660002561612819822980003200032832269…20848051280003200672094801000400000045PRP= -55.9+0.0489MYCT+0.0153MMIN+0.0056MMAX
+0.6410CACH-0.2700CHMIN+1.480CHMAXwitten&eibe21SoybeanclassificationAttributeNumberofvaluesSamplevalueEnvironmentTimeofoccurrence7JulyPrecipitation3Abovenormal…SeedCondition2NormalMoldgrowth2Absent…FruitConditionoffruitpods4NormalFruitspots5?LeavesCondition2AbnormalLeafspotsize3?…StemCondition2AbnormalStemlodging2Yes…RootsCondition3NormalDiagnosis19Diaporthestemcankerwitten&eibe22TheroleofdomainknowledgeIfleafconditionisnormal
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotIfleafmalformationisabsent
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotButinthisdomain,“l(fā)eafconditionisnormal”implies
“l(fā)eafmalformationisabsent”!witten&eibe23OutlineMachinelearningandClassificationExamples*LearningasSearch
BiasWeka24LearningassearchInductivelearning:findaconceptdescriptionthatfitsthedataExample:rulesetsasdescriptionlanguageEnormous,butfinite,searchspaceSimplesolution:enumeratetheconceptspaceeliminatedescriptionsthatdonotfitexamplessurvivingdescriptionscontaintargetconceptwitten&eibe25EnumeratingtheconceptspaceSearchspaceforweatherproblem4x4x3x3x2=288possiblecombinationsWith14rules2.7x1034possiblerulesetsSolution:candidate-eliminationalgorithmOtherpracticalproblems:MorethanonedescriptionmaysurviveNodescriptionmaysurviveLanguageisunabletodescribetargetconceptordatacontainsnoisewitten&eibe26TheversionspaceSpaceofconsistentconceptdescriptionsCompletelydeterminedbytwosetsL:mostspecificdescriptionsthatcoverallpositiveexamplesandnonegativeonesG:mostgeneraldescriptionsthatdonotcoveranynegativeexamplesandallpositiveonesOnlyLandGneedbemaintainedandupdatedBut:stillcomputationallyveryexpensiveAnd:doesnotsolveotherpracticalproblemswitten&eibe27*Versionspaceexample,1Given:redorgreencowsorchicken
Startwith: L={} G={<*,*>}Firstexample:<green,cow>:positive
HowdoesthischangeLandG?witten&eibe28*Versionspaceexample,2Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<*,*>}Secondexample:<red,chicken>:negativewitten&eibe29*Versionspaceexample,3Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<green,*>,<*,cow>}Finalexample:<green,chicken>:positive
witten&eibe30*Versionspaceexample,4Given:redorgreencowsorchicken
Resultantversionspace: L={<green,*>} G={<green,*>}witten&eibe31*Versionspaceexample,5Given:redorgreencowsorchicken
L={} G={<*,*>}<green,cow>:positive L={<green,cow>} G={<*,*>}<red,chicken>:negative L={<green,cow>} G={<green,*>,<*,cow>}<green,chicken>:positive L={<green,*>} G={<green,*>}witten&eibe32*Candidate-eliminationalgorithmInitializeLandGForeachexamplee: Ifeispositive: DeleteallelementsfromGthatdonotcovere
ForeachelementrinLthatdoesnotcovere: Replacerbyallofitsmostspecificgeneralizations
that 1.covereand 2.aremorespecificthansomeelementinG RemoveelementsfromLthat
aremoregeneralthansomeotherelementinL Ifeis
negative: DeleteallelementsfromLthatcovere
ForeachelementrinGthatcoverse:
Replacerbyallofitsmostgeneralspecializations
that 1.donotcovereand
2.aremoregeneralthansomeelementinL
RemoveelementsfromGthat
aremorespecificthansomeotherelementinGwitten&eibe33OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka34BiasImportantdecisionsinlearningsystems:ConceptdescriptionlanguageOrderinwhicht
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明陶瓷板項(xiàng)目可行性研究報(bào)告范文
- GPS接收板行業(yè)深度研究報(bào)告
- 中國(guó)合成制動(dòng)液市場(chǎng)深度評(píng)估及投資方向研究報(bào)告
- 醫(yī)療線束行業(yè)深度研究報(bào)告
- 2025年汽車應(yīng)急燈項(xiàng)目深度研究分析報(bào)告
- 2025年中國(guó)亞?;撬嵝袠I(yè)市場(chǎng)全景監(jiān)測(cè)及投資前景展望報(bào)告
- 職校技校行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 2024中國(guó)手機(jī)應(yīng)用開發(fā)者現(xiàn)狀調(diào)查報(bào)告
- 不銹鋼及類似日用金屬制品制造市場(chǎng)前景及投資研究報(bào)告
- 2025技術(shù)服務(wù)合同驗(yàn)收
- 膜片鉗常見問題匯總(人人都會(huì)膜片鉗)
- 校車安全逃生技能培訓(xùn)學(xué)習(xí)
- (新版)電網(wǎng)規(guī)劃專業(yè)知識(shí)考試題庫(含答案)
- 學(xué)校心理危機(jī)干預(yù)流程圖
- 杏醬生產(chǎn)工藝
- 融資擔(dān)保業(yè)務(wù)風(fēng)險(xiǎn)分類管理辦法
- 年會(huì)抽獎(jiǎng)券可編輯模板
- 靜電場(chǎng)知識(shí)點(diǎn)例題結(jié)合
- 道德寶章·白玉蟾
- GB∕T 41170.2-2021 造口輔助器具的皮膚保護(hù)用品 試驗(yàn)方法 第2部分:耐濕完整性和黏合強(qiáng)度
- 防雷裝置檢測(cè)質(zhì)量管理手冊(cè)
評(píng)論
0/150
提交評(píng)論