2023屆福建省泉州市泉港區(qū)一中高考仿真卷數學試卷含解析_第1頁
2023屆福建省泉州市泉港區(qū)一中高考仿真卷數學試卷含解析_第2頁
2023屆福建省泉州市泉港區(qū)一中高考仿真卷數學試卷含解析_第3頁
2023屆福建省泉州市泉港區(qū)一中高考仿真卷數學試卷含解析_第4頁
2023屆福建省泉州市泉港區(qū)一中高考仿真卷數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.3.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-14.已知向量,,若,則與夾角的余弦值為()A. B. C. D.5.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.已知正項數列滿足:,設,當最小時,的值為()A. B. C. D.7.閱讀下側程序框圖,為使輸出的數據為31,則①處應填的數字為A.4 B.5 C.6 D.78.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,9.函數的大致圖象為()A. B.C. D.10.已知集合,集合,則等于()A. B.C. D.11.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.12.已知等比數列滿足,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.在中,若,則的范圍為________.15.已知復數z是純虛數,則實數a=_____,|z|=_____.16.在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數的底數.若點,的面積為3,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大?。唬?)求的最大值.18.(12分)已知數列的通項,數列為等比數列,且,,成等差數列.(1)求數列的通項;(2)設,求數列的前項和.19.(12分)設函數.(1)當時,求不等式的解集;(2)若對任意都有,求實數的取值范圍.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.22.(10分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據程序框圖寫出幾次循環(huán)的結果,直到輸出結果是8時.【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據循環(huán)條件依次寫出每次循環(huán)結果即可解決,屬于簡單題目.2、A【解析】

根據輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數式大小比較,條件程序框圖的簡單應用,屬于基礎題.3、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.4、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.5、A【解析】

根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.6、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.7、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.8、B【解析】

根據線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內,故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.9、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.10、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.11、D【解析】

利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.12、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】

借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數的化簡,重點考查學生的計算能力,難度一般.15、11【解析】

根據復數運算法則計算復數z,根據復數的概念和模長公式計算得解.【詳解】復數z,∵復數z是純虛數,∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復數的概念和模長計算,根據復數是純虛數建立方程求解,計算模長,關鍵在于熟練掌握復數的運算法則.16、【解析】

對求導,再根據點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導數研究函數的切線,難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】

(1)轉化條件得,進而可得,即可得解;(2)由化簡可得,由結合三角函數的性質即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應用,考查了三角函數的性質,屬于中檔題.18、(1);(2).【解析】

(1)根據,,成等差數列以及為等比數列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數列為等比數列,且,,成等差數列.設數列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據數列的通項公式是否符合等差乘以等比的形式來判斷.19、(1)(2)【解析】

利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉化為函數最值問題.20、(1)證明見解析(2)【解析】

(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系.如圖所示:則,,,.∴,,.設為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.【點睛】本題第一問考查線線垂直,先證線面垂直時解題關鍵,第二問考查二面角,建立空間直角坐標系是解題關鍵,屬于中檔題.21、(1)證明見解析(2)【解析】

(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【點睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.22、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯;(3)分布列見解析,.【解析】

(1)分別求出中青年、中老年對高考了解的頻數,即可求出概率;(2)根據數據列出列聯表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論