版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.2.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.3.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.4.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.5.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.6.點(diǎn)在曲線上,過(guò)作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.37.已知數(shù)列的前項(xiàng)和為,且,,則()A. B. C. D.8.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.329.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)該店2017年每周六的銷售量及當(dāng)天氣溫得到如圖所示的散點(diǎn)圖(軸表示氣溫,軸表示銷售量),由散點(diǎn)圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負(fù)相關(guān),相關(guān)系數(shù)的值為C.負(fù)相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負(fù)數(shù)的值為10.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.11.已知向量與的夾角為,,,則()A. B.0 C.0或 D.12.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個(gè)算法的流程圖,則輸出的x的值為_______.14.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.15.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.16.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.18.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過(guò)濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過(guò)濾器采用并聯(lián)安裝,再與一級(jí)過(guò)濾器串聯(lián)安裝.其中每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn)在使用過(guò)程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過(guò)程中單獨(dú)購(gòu)買濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)一級(jí)過(guò)濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)二級(jí)過(guò)濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.19.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.20.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.22.(10分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)?,?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.2、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.3、A【解析】
由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.4、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.5、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問(wèn)題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.7、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項(xiàng)公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項(xiàng)為,第二項(xiàng)為,所以公比為.所以,所以.故選:C【點(diǎn)睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項(xiàng)公式,屬于基礎(chǔ)題.8、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長(zhǎng)為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡(jiǎn)單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.9、C【解析】
根據(jù)正負(fù)相關(guān)的概念判斷.【詳解】由散點(diǎn)圖知隨著的增大而減小,因此是負(fù)相關(guān).相關(guān)系數(shù)為負(fù).故選:C.【點(diǎn)睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負(fù)相關(guān)的區(qū)別.掌握正負(fù)相關(guān)的定義是解題基礎(chǔ).10、B【解析】
分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過(guò)點(diǎn)作平面的垂線與過(guò)點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.11、B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長(zhǎng)平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過(guò)程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過(guò)程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問(wèn)題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用流程圖,逐次進(jìn)行運(yùn)算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時(shí)14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別,“還原現(xiàn)場(chǎng)”是求解這類問(wèn)題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).14、答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.15、【解析】
取的中點(diǎn),設(shè)等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點(diǎn),設(shè)等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點(diǎn)睛】本題考查三棱錐的外接球的表面積,關(guān)鍵在于根據(jù)三棱錐的面的關(guān)系、棱的關(guān)系和長(zhǎng)度求得外接球的球心的位置,球的半徑,屬于中檔題.16、【解析】
由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解析】
將函數(shù)解析式化簡(jiǎn)即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當(dāng),即時(shí),;當(dāng),即時(shí),.綜上,得時(shí),取得最小值為0;當(dāng)時(shí),取得最大值為.【點(diǎn)睛】本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數(shù)的性質(zhì)等,較為綜合,也是??碱}型,需要計(jì)算正確,屬于基礎(chǔ)題18、(1)0.024;(2)分布列見(jiàn)解析,;(3)【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買各級(jí)濾芯所需總費(fèi)用(單位:元)因?yàn)椋遥?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買的各級(jí)濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1)首先對(duì)函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過(guò)構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時(shí),則在單調(diào)遞減,當(dāng)時(shí),則在單調(diào)遞增,所以,當(dāng)時(shí),,即,則在上單調(diào)遞增,當(dāng)時(shí),,易知當(dāng)時(shí),,當(dāng)時(shí),,由零點(diǎn)存在性定理知,,不妨設(shè),使得,當(dāng)時(shí),,即,當(dāng)時(shí),,即,當(dāng)時(shí),,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時(shí)等號(hào)成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時(shí),在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時(shí),有,故成立,從而得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.20、(1)見(jiàn)解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人傭金合同范例
- 合同范例 鑒于
- 賣服裝合伙合同模板
- 高分子課課程設(shè)計(jì)
- 環(huán)保工程改造施工合同
- 2024年小賣部商業(yè)租賃協(xié)議
- 體育賽事組織團(tuán)隊(duì)選拔辦法
- 總負(fù)責(zé)人職務(wù)合同
- 機(jī)械租賃合同:農(nóng)業(yè)機(jī)械化
- 城市綠化養(yǎng)護(hù)工程中介服務(wù)探討
- 2024年遼寧醫(yī)藥職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)必考題
- 2024中國(guó)郵政集團(tuán)限公司云南省分公司招聘158人公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
- SYT 0452-2021 石油天然氣金屬管道焊接工藝評(píng)定-PDF解密
- (2024年)消防安全主題班會(huì)
- 做情緒的主人拒絕精神內(nèi)耗
- 藥學(xué)大學(xué)生職業(yè)規(guī)劃
- 心理放松訓(xùn)練
- 客戶需求及層次
- 海綿城市完整
- 力敏傳感器教學(xué)課件
- 強(qiáng)奸罪起訴狀
評(píng)論
0/150
提交評(píng)論