




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
3.3垂徑定理(第1課時)圓的軸對稱性
例1如圖,AB是⊙O的一條弦,作直徑CD,使CD⊥AB,垂足為M.(1)右圖是軸對稱圖形嗎?如果是,對稱軸是什么?(2)圖中有哪些等量關(guān)系?說一說你的理由.
反思:圓是軸對稱圖形,它的每一條直徑所在的直線都是它的對稱軸.例2一條30m寬的河上架有一半徑為25m
的圓弧形拱橋,請問一頂部寬為6m且高出水面4m的船能否通過此橋?并說明理由.解析:假設(shè)該橋恰能通過橋時,橋的半徑為r,如圖所示,AB表示拱橋,EF為船頂部寬,CD為船頂?shù)剿娴木嚯x.垂徑定理(連結(jié)OE,OB,設(shè)OC=x(O為圓心),在Rt△OBC中,r2=152+x2,①在Rt△ODE中,r2=(4+x)2+32
②由①②,得r=
≈29.2>25即船恰能通過時,橋的半徑為
m,而橋的半徑只有25m,所以該船不能通過此橋.變式:如圖,⊙O的直徑為10,弦AB的長為8,M是弦AB上的動點,則OM長的取值范圍是(
)A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5答案:A例3
如圖,△OCD為等腰三角形,底邊CD交⊙O于A、B兩點.求證:AC=BD.
垂徑定理的應(yīng)用解:作OE⊥CD于E.則由垂徑定理,得AE=BE.∵△OCD為等腰三角形,∴CE=DE.∴AC=BD.例利用尺規(guī)作圖把弧AB
四等分.(正解:如圖,先作AB的中垂線交AB,AB于點G,T,連結(jié)AG,BG分別作AG,BG的中垂線交AG,BG,于點M,N.(((1.圓是軸對稱圖形,每一條過圓心的直線都是圓的對稱軸.2.垂直于弦的直徑平分這條弦,并且平
分.弦所對的弧1.如圖,AB是⊙O的直徑,弦CD⊥AB于點M,OB=5,OM=3,則CD的長為()
A.4
B.5
C.8
D.16第1題圖
2.如圖,已知⊙O的半徑為5mm,弦AB=8mm,則圓心O到AB的距離是()
A.1mm
B.2mmC.3mm
D.4mmA組基礎(chǔ)訓(xùn)練第2題圖CC3.如圖,⊙O的弦AB垂直平分半徑OC,若AB=,則⊙O的半徑為()A.B.C.D.第3題圖
4.如圖,將半徑為2cm的圓形紙片折疊后,圓弧恰好經(jīng)過圓心O,則折痕AB的長為()A.2cmB.cmC.
cmD.cm第4題圖AC5.如圖所示,CD是⊙O的直徑,AB是弦,
OD⊥AB于M,則可得出AM=BM,AC=BC等結(jié)論,請你按現(xiàn)有的圖形再寫出另外兩個結(jié)論:
.第5題圖
6.如圖,AB是半圓的直徑,點O是圓心,點C是半圓上的一點,點E是AC的中點,OE交弦AC于點D,若AC=8cm,DE=2cm,則OD的長為
cm.第6題圖((AD=BD,∠ACD=∠BCD等((3(7.如圖,在⊙O中,直徑AB⊥弦CD于點M,AM=18,BM=8,則CD的長為
.第7題圖
8.某市建設(shè)污水管網(wǎng)工程,該圓柱形污水管的直徑為100cm,截面如圖所示,若管內(nèi)污水的水面寬AB=60cm,則污水的最大深度為
cm.第8題圖24109.如圖,是一個單心圓隧道的截面,若路面AB寬為10m,凈高CD為7m,則求此隧道單心圓的半徑OA.【答案】設(shè)半徑為x,則OD=7-x∵CD⊥AB,∴AD=BD=AB=5.由勾股定理得AO2=OD2+AD2,即x2=(7-x)2+52,∴x=,∴⊙O的半徑為m.第9題圖10.如圖,AB,AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分別為M,N,如圖MN=3,求BC的長.11.如圖,在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于C,D兩點,試判斷AC與BD的大小關(guān)系,并說明理由.第10題圖【答案】∵OM⊥AB,ON⊥AC,∴M,N分別為AB,AC的中點,∴,∴BC=6.第11題圖【答案】作OE⊥AB于點E,∵OE⊥AB,∴AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.//13.如圖,在Rt△AOB中,∠O=90°,OA=6,OB=8,以點O為圓心,OA為半徑作圓交AB于點C,求BC的長.第13題圖【答案】作OE⊥AB于點E,由勾股定理AB==10,又∵S△AOB=AO·BO=AB·OE得OE=4.8,∵OE⊥AB,∴AE=EC=AC,由勾股定理AE==3.6,∴AC=2AE=7.2,∴BC=AB-AC=10-7.2=2.8.【點撥】勾股定理結(jié)合面積試求Rt△斜邊上的高線,再利用垂徑定理求解.B組自主提高12.已知⊙O的半徑為10cm,弦MN∥EF,且MN=12cm,EF=16cm,求弦MN和EF之間的距離.第12題圖【答案】如圖分兩種情況:MN,EF分別在圓心O的同側(cè)或異側(cè).作OD⊥MN于D,OG⊥EF于G,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保定學(xué)院《多媒體制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東石油化工學(xué)院《工程項目管理信息系統(tǒng)及軟件應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江理工大學(xué)《幼兒園教育活動設(shè)計與實施科學(xué)領(lǐng)域》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025至2030汽車改裝行業(yè)市場發(fā)展現(xiàn)狀及競爭形勢及有效策略與實施路徑評估報告
- 業(yè)主聚餐活動策劃方案
- 業(yè)務(wù)推動活動方案
- 培訓(xùn)技能類活動方案
- 大型活動報備活動方案
- 夜游跨年活動方案
- 大氣公司活動策劃方案
- ISO-13679-油套管接頭試驗評價技術(shù)介紹
- 2023年機電產(chǎn)物報價手冊9分冊18本
- 鋼結(jié)構(gòu)36米桁架吊裝安全監(jiān)理實施細(xì)則1
- 西鐵城操作說明書
- 翡翠店面計劃書
- 《危險化學(xué)品重大危險源監(jiān)督管理暫行規(guī)定》解讀
- 陪伴教育機器人簡介演示
- 年產(chǎn)10萬噸12度葡萄酒工廠設(shè)計說明書樣本
- 高考前后心理疏導(dǎo)應(yīng)急預(yù)案
- 堅定理想信念教學(xué)課件
- 監(jiān)理抽檢表 - 09涵洞工程
評論
0/150
提交評論