下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
23兩角和與差的正弦余弦函數(shù)2時(shí)間:45分鐘滿(mǎn)分:80分班級(jí)________姓名________分?jǐn)?shù)________一、選擇題:(每小題5分,共5×6=30分)1.已知a=sin10°+cos10°,b=sin20°+cos20°,c=eq\f(\r(6),2),則a、b、c的大小關(guān)系為()A.a(chǎn)<c<bB.a(chǎn)<b<cC.c<b<aD.b<a<c答案:A解析:a=eq\r(2)sin55°<eq\r(2)sin60°=eq\f(\r(6),2),b=eq\r(2)sin65°>eq\r(2)sin60°=eq\f(\r(6),2).2.已知sinα+sinβ+sin1=0,cosα+cosβ+cos1=0,則cos(α-β)=()A.-1B.1C.-eq\f(1,2)\f(1,2)答案:C解析:原式變?yōu)閟inα+sinβ=-sin1①cosα+cosβ=-cos1②①②平方相加得cos(α-β)=-eq\f(1,2).3.設(shè)函數(shù)f(x)=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4)))+coseq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4))),則()A.y=f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))單調(diào)遞增,其圖像關(guān)于直線x=eq\f(π,4)對(duì)稱(chēng)B.y=f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))單調(diào)遞增,其圖像關(guān)于直線x=eq\f(π,2)對(duì)稱(chēng)C.y=f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))單調(diào)遞減,其圖像關(guān)于直線x=eq\f(π,4)對(duì)稱(chēng)D.y=f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))單調(diào)遞減,其圖像關(guān)于直線x=eq\f(π,2)對(duì)稱(chēng)答案:D解析:f(x)=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4)))+coseq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,4)))=eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,2)))=eq\r(2)cos2x.則函數(shù)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))單調(diào)遞減,其圖像關(guān)于x=eq\f(π,2)對(duì)稱(chēng).4.已知銳角α,β滿(mǎn)足cosα=eq\f(3,5),cos(α+β)=-eq\f(5,13),則cos(2π-β)的值為()\f(33,65)B.-eq\f(33,65)\f(54,65)D.-eq\f(54,65)答案:A解析:∵α,β為銳角,cosα=eq\f(3,5),cos(α+β)=-eq\f(5,13),∴sinα=eq\f(4,5),sin(α+β)=eq\f(12,13),∴cos(2π-β)=cosβ=cos[(α+β)-α]=cos(α+β)·cosα+sin(α+β)·sinα=-eq\f(5,13)×eq\f(3,5)+eq\f(12,13)×eq\f(4,5)=eq\f(33,65).5.若sinα+sinβ=eq\f(\r(2),2),則cosα+cosβ的取值范圍是()\b\lc\[\rc\](\a\vs4\al\co1(0,\f(\r(2),2)))\b\lc\[\rc\](\a\vs4\al\co1(-\f(\r(2),2),\f(\r(2),2)))C.[-2,2]\b\lc\[\rc\](\a\vs4\al\co1(-\f(\r(14),2),\f(\r(14),2)))答案:D解析:設(shè)cosα+cosβ=x,則(sinα+sinβ)2+(cosα+cosβ)2=eq\f(1,2)+x2,即2+2cos(α-β)=eq\f(1,2)+x2,∴x2=eq\f(3,2)+2cos(α-β).顯然,當(dāng)cos(α-β)取得最大值時(shí),x2有最大值.∴0≤x2≤eq\f(7,2)即-eq\f(\r(14),2)≤x≤eq\f(\r(14),2).6.設(shè)α,β∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),sinα=eq\f(\r(5),5),sinβ=eq\f(\r(10),10),α+β的大小為()A.-135°B.45°C.135°D.45°或135°答案:B解析:cos(α+β)=eq\f(\r(2),2),∵α+β∈(0°,180°),∴α+β=45°.二、填空題:(每小題5分,共5×3=15分)7.-cos(-50°)cos129°+cos400°cos39°=________.答案:cos1°解析:-cos(-50°)cos129°+cos400°cos39°=-sin40°(-sin39°)+cos40°cos39°=cos(40°-39°)=cos1°.8.已知α是第二象限角,sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))=-eq\f(3,5),則cosα=________.答案:-eq\f(4+3\r(3),10)解析:因?yàn)棣潦堑诙笙藿?,sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))=-eq\f(3,5)<0,所以α+eq\f(π,3)是第三象限角,所以coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))=-eq\f(4,5),所以cosα=coseq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))-\f(π,3)))=eq\f(1,2)coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))+eq\f(\r(3),2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,3)))=-eq\f(4+3\r(3),10).\f(2sin80°-cos70°,cos20°)=__________.答案:eq\r(3)解析:原式=eq\f(2sin20°+60°-sin20°,cos20°)=eq\f(\r(3)cos20°+sin20°-sin20°,cos20°)=eq\r(3).三、解答題:(共35分,11+12+12)10.已知3sinβ=sin(2α+β),α≠kπ+eq\f(π,2),α+β≠kπ+eq\f(π,2),k∈Z,求證:tan(α+β)=2tanα.證明:由3sinβ=sin(2α+β),得3sin[(α+β)-α]=sin[(α+β)+α].3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα.整理,得sin(α+β)cosα=2cos(α+β)sinα.∴α≠kπ+eq\f(π,2),α+β≠kπ+eq\f(π,2)(k∈Z).將上式兩邊同除以cosα·cos(α+β),得tan(α+β)=2tanα.11.如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知點(diǎn)A,B的橫坐標(biāo)分別為eq\f(\r(2),10),eq\f(2\r(5),5).求cos(α-β)的值.解析:依題意,得cosα=eq\f(\r(2),10),cosβ=eq\f(2\r(5),5).因?yàn)棣?,β為銳角,所以sinα=eq\f(7\r(2),10),sinβ=eq\f(\r(5),5),所以cos(α-β)=cosαcosβ+sinαsinβ=eq\f(\r(2),10)×eq\f(2\r(5),5)+eq\f(7\r(2),10)×eq\f(\r(5),5)=eq\f(9\r(10),50).12.已知a、b是兩不共線的向量,且a=(cosα,sinα),b=(cosβ,sinβ).(1)求證:a+b與a-b垂直;(2)若α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,4),\f(π,4))),β=eq\f(π,4),且a·b=eq\f(3,5),求sinα.解:(1)證明:∵a2=cos2α+sin2α=1,b2=cos2β+sin2β=1.∴(a+b)·(a-b)=a2-b2=0.即(a+b)⊥(a-b).(2)由已知a·b=cosαcoseq\f(π,4)+sinαsineq\f(π,4)=coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))且a·b=eq\f(3,5),∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(3,5).由-eq\f(π,4)<α<eq\f(π,4),得-eq\f(π,2)<α-eq\f(π,4)<0.∴sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=-eq\r(1-cos2\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4))))=-eq\f(4,5).∴sinα=sineq
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 乒乓球用品行業(yè)銷(xiāo)售工作總結(jié)
- 酒店旅游行業(yè)行政后勤工作總結(jié)
- 線描基本技法課程設(shè)計(jì)
- 圖文制作行業(yè)前臺(tái)接待工作總結(jié)
- 三年高考地理(全國(guó)乙卷21-23)真題知識(shí)點(diǎn)-人口與城市
- 組織學(xué)生參加競(jìng)賽活動(dòng)計(jì)劃
- 2023-2024學(xué)年北京市清華大學(xué)附中朝陽(yáng)學(xué)校高一(下)期中語(yǔ)文試卷
- DB32T 3393-2018 警務(wù)效能監(jiān)察工作規(guī)范
- 網(wǎng)絡(luò)零售店店員工作總結(jié)
- 服務(wù)管理培訓(xùn)
- 工程項(xiàng)目管理(三控三管一協(xié)調(diào))
- 初三家長(zhǎng)會(huì)語(yǔ)文教師發(fā)言
- 游戲機(jī)策劃方案
- 2024消防安全基礎(chǔ)知識(shí)培訓(xùn)課件
- 《小兒留置導(dǎo)尿管》課件
- 粵教版科學(xué)四年級(jí)上冊(cè)全冊(cè)試卷(含答案)
- 宮腔鏡診治規(guī)范
- 安全管理計(jì)劃指標(biāo)和指標(biāo)體系
- 倉(cāng)庫(kù)物料盤(pán)點(diǎn)作業(yè)規(guī)范培訓(xùn)課件
- 六年級(jí)《牽手兩代-第二講-乖孩子為什么會(huì)厭學(xué)》家長(zhǎng)課程培訓(xùn)
- 水稻全生育期營(yíng)養(yǎng)管理
評(píng)論
0/150
提交評(píng)論