高中數(shù)學(xué)蘇教版第二章平面向量 第2章向量的加法_第1頁
高中數(shù)學(xué)蘇教版第二章平面向量 第2章向量的加法_第2頁
高中數(shù)學(xué)蘇教版第二章平面向量 第2章向量的加法_第3頁
高中數(shù)學(xué)蘇教版第二章平面向量 第2章向量的加法_第4頁
高中數(shù)學(xué)蘇教版第二章平面向量 第2章向量的加法_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第2章平面向量向量的線性運(yùn)算2.2.1向量的加法A級(jí)基礎(chǔ)鞏固1.下列等式錯(cuò)誤的是()A.a(chǎn)+0=a B.a(chǎn)+b=b+aC.a(chǎn)+(b+c)=(a+b)+c \o(AB,\s\up13(→))+eq\o(BA,\s\up13(→))=2eq\o(AB,\s\up13(→))解析:根據(jù)運(yùn)算律知,選項(xiàng)A、B、C顯然正確,對(duì)于選項(xiàng)D,應(yīng)為eq\o(AB,\s\up13(→))+eq\o(BA,\s\up13(→))=0.故D項(xiàng)錯(cuò)誤.答案:D2.如圖所示,四邊形ABCD是梯形,AD∥BC,O是AC與BD的交點(diǎn),則eq\o(OA,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=()\o(CD,\s\up13(→)) B.-eq\o(CO,\s\up13(→))\o(DA,\s\up13(→)) \o(CO,\s\up13(→))解析:eq\o(OA,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=eq\o(OA,\s\up13(→))+eq\o(AC,\s\up13(→))=eq\o(OC,\s\up13(→))=-eq\o(CO,\s\up13(→)).答案:B3.在四邊形ABCD中,若eq\o(AC,\s\up13(→))=eq\o(AB,\s\up13(→))+eq\o(AD,\s\up13(→)),則()A.四邊形ABCD為矩形B.四邊形ABCD是菱形C.四邊形ABCD是正方形D.四邊形ABCD是平行四邊形解析:由向量加減法的平行四邊形法則知四邊形ABCD是平行四邊形.答案:D4.已知向量a∥b,且|a|>|b|>0,則向量a+b的方向()A.與向量a方向相同 B.與向量a方向相反C.與向量b方向相同 D.與向量b方向相反解析:a∥b且|a|>|b|>0,所以當(dāng)a,b同向時(shí),a+b的方向與a相同,當(dāng)a,b反向時(shí),因?yàn)閨a|>|b|,所以a+b的方向仍與a相同.答案:A5.在四邊形ABCD中,給出下列四個(gè)結(jié)論,其中一定正確的是()\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(CA,\s\up13(→)) \o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→))\o(AB,\s\up13(→))+eq\o(AD,\s\up13(→))=eq\o(AC,\s\up13(→)) \o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(BD,\s\up13(→))解析:由向量加減法法則知eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)),eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→)),C項(xiàng)只有四邊形ABCD是平行四邊形時(shí)才成立.eq\o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(DB,\s\up13(→)).答案:B6.在△ABC中,eq\o(AB,\s\up13(→))=a,eq\o(BC,\s\up13(→))=b,eq\o(CA,\s\up13(→))=c,則a+b+c=________.解析:由向量加法的三角形法則,得eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)),則a+b+c=eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(CA,\s\up13(→))=0.答案:0\o(AB,\s\up13(→))+eq\o(DF,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(FA,\s\up13(→))=__________.答案:08.已知△ABC是正三角形,則在下列各等式中不成立的是()A.|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))|=|eq\o(BC,\s\up13(→))+eq\o(CA,\s\up13(→))|B.|eq\o(AC,\s\up13(→))+eq\o(CB,\s\up13(→))|=|eq\o(BA,\s\up13(→))+eq\o(BC,\s\up13(→))|C.|eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(CA,\s\up13(→))+eq\o(CB,\s\up13(→))|D.|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(CB,\s\up13(→))+eq\o(BA,\s\up13(→))+eq\o(CA,\s\up13(→))|解析:如圖所示,作出正三角形ABC,AD,CE分別是三角形的中線,利用平行四邊形法則:|eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=2|eq\o(AD,\s\up13(→))|,|eq\o(CA,\s\up13(→))+eq\o(CB,\s\up13(→))|=2|eq\o(CE,\s\up13(→))|.又因?yàn)椤鰽BC為正三角形,所以|eq\o(AD,\s\up13(→))|=|eq\o(CE,\s\up13(→))|.故C項(xiàng)正確.A、D兩項(xiàng)直接利用三角形法則判斷也是正確的,只有B項(xiàng)不正確.答案:B9.如圖所示,已知△ABC是直角三角形且∠A=90°.則在下列各結(jié)論中,正確的結(jié)論個(gè)數(shù)為________.①|(zhì)eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(BC,\s\up13(→))|②|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))|=|eq\o(CA,\s\up13(→))|③|eq\o(AB,\s\up13(→))+eq\o(CA,\s\up13(→))|=|eq\o(BC,\s\up13(→))|④|eq\o(AB,\s\up13(→))|2+|eq\o(AC,\s\up13(→))|2=|eq\o(BC,\s\up13(→))|2解析:以eq\o(AB,\s\up13(→)),eq\o(AC,\s\up13(→))為鄰邊作平行四邊形ABDC,則ABDC為矩形,而矩形的對(duì)角線相等,故①③均正確,另外兩個(gè)可直接求解也是正確的.答案:4個(gè)10.化簡:(1)eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→));(2)eq\o(DB,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→)).解:(1)eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)).(2)eq\o(DB,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(DB,\s\up13(→))=(eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→)))+eq\o(DB,\s\up13(→))=eq\o(BD,\s\up13(→))+eq\o(DB,\s\up13(→))=0.B級(jí)能力提升11.在菱形ABCD中,∠DAB=60°,|eq\o(AB,\s\up13(→))|=1,則|eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))|=________.解析:eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→)),在菱形ABCD中,|eq\o(AD,\s\up13(→))|=|eq\o(AB,\s\up13(→))|=1,又∠DAB=60°,所以△ABD為等邊三角形.所以|eq\o(BD,\s\up13(→))|=1.答案:112.如圖所示,用兩根繩子把重為10N的物體W吊在水平桿AB上,∠ACW=150°,∠BCW=120°,求A和B處所受力的大小(繩子的重量忽略不計(jì)).解:設(shè)eq\o(CE,\s\up13(→)),eq\o(CF,\s\up13(→))分別表示A,B處所受的力,10N的重力用eq\o(CG,\s\up13(→))表示,則eq\o(CE,\s\up13(→))+eq\o(CF,\s\up13(→))=eq\o(CG,\s\up13(→))(如圖所示).因?yàn)椤螮CG=180°-150°=30°,∠FCG=180°-120°=60°,所以|eq\o(CE,\s\up13(→))|=|eq\o(CG,\s\up13(→))|cos30°=10×eq\f(\r(3),2)=5eq\r(3)(N),|eq\o(CF,\s\up13(→))|=|eq\o(CG,\s\up13(→))|cos60°=10×eq\f(1,2)=5(N).故A和B處所受力的大小分別為5eq\r(3)N,5N.13.如圖所示,平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,P為平面內(nèi)任意一點(diǎn),求證:eq\o(PA,\s\up13(→))+eq\o(PB,\s\up13(→))+eq\o(PC,\s\up13(→))+eq\o(PD,\s\up13(→))=4eq\o(PO,\s\up13(→)).證明:eq\o(PO,\s\up13(→))=eq\o(PA,\s\up13(→))+eq\o(AO,\s\up13(→)),①eq\o(PO,\s\up13(→))=eq\o(PD,\s\up13(→))+eq\o(DO,\s\up13(→)),②eq\o(PO,\s\up13(→))=eq\o(PB,\s\up13(→))+eq\o(BO,\s\up13(→)),③eq\o(PO,\s\up13(→))=eq\o(PC,\s\up13(→))+eq\o(CO,\s\up13(→)),④因?yàn)镺為平行四邊形ABCD對(duì)角線的交點(diǎn),所以eq\o(AO,\s\up13(→))=eq\o(OC,\s\up13(→))=-eq\o(CO,\s\up13(→)),eq\o(BO,\s\up13(→))=eq\o(OD,\s\up13(→))=-eq\o(DO,\s\up13(→)).①+②+③+④,得4eq\o(PO,\s\up13(→))=eq\o(PA,\s\up13(→))+eq\o(PB,\s\up13(→))+eq\o(PC,\s\up13(→))+eq\o(PD,\s\up13(→))+(eq\o(AO,\s\up13(→))+eq\o(CO,\s\up13(→)))+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論