2022-2023學(xué)年蘇州高新區(qū)實驗中考數(shù)學(xué)押題卷含解析_第1頁
2022-2023學(xué)年蘇州高新區(qū)實驗中考數(shù)學(xué)押題卷含解析_第2頁
2022-2023學(xué)年蘇州高新區(qū)實驗中考數(shù)學(xué)押題卷含解析_第3頁
2022-2023學(xué)年蘇州高新區(qū)實驗中考數(shù)學(xué)押題卷含解析_第4頁
2022-2023學(xué)年蘇州高新區(qū)實驗中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.62.在方格紙中,選擇標(biāo)有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④3.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.34.某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機(jī)取一個,取到紅球B.?dāng)S一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過95.如圖是一個由4個相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.6.如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l7.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規(guī)作圖的痕跡,則下列結(jié)論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.如圖,兩個轉(zhuǎn)盤A,B都被分成了3個全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),固定指針,同時轉(zhuǎn)動轉(zhuǎn)盤A,B,兩個轉(zhuǎn)盤停止后觀察兩個指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向上邊的扇形).小明每轉(zhuǎn)動一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉(zhuǎn)盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.359.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=10.下列大學(xué)的校徽圖案是軸對稱圖形的是()A. B. C. D.11.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°12.為了解某小區(qū)小孩暑期的學(xué)習(xí)情況,王老師隨機(jī)調(diào)查了該小區(qū)8個小孩某天的學(xué)習(xí)時間,結(jié)果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關(guān)于這組數(shù)據(jù),下列結(jié)論錯誤的是()A.極差是3.5 B.眾數(shù)是1.5 C.中位數(shù)是3 D.平均數(shù)是3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.袋中裝有6個黑球和n個白球,經(jīng)過若干次試驗,發(fā)現(xiàn)“若從袋中任摸出一個球,恰是黑球的概率為”,則這個袋中白球大約有_____個.14.如圖,點是反比例函數(shù)圖像上的兩點(點在點左側(cè)),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.15.關(guān)于的一元二次方程有兩個相等的實數(shù)根,則的值等于_____.16.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.17.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經(jīng)過第一、三、四象限,當(dāng)x1<x2時,y1與y2的大小關(guān)系為______________.18.如圖,直線經(jīng)過正方形的頂點分別過此正方形的頂點、作于點、于點.若,則的長為________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為響應(yīng)國家“厲行節(jié)約,反對浪費(fèi)”的號召,某班一課外活動小組成員在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生,針對“你每天是否會節(jié)約糧食”這個問題進(jìn)行了調(diào)查,并將調(diào)查結(jié)果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統(tǒng)計圖(如圖)(1)這次被抽查的學(xué)生共有______人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為______;(2)補(bǔ)全兩個統(tǒng)計圖;(3)如果該校學(xué)生共有2000人,請估計“每天都會節(jié)約糧食”的學(xué)生人數(shù);(4)若不節(jié)約零食造成的浪費(fèi),按平均每人每天浪費(fèi)5角錢計算,小江認(rèn)為,該校學(xué)生一年(365天)共將浪費(fèi):2000×20%×0.5×365=73000(元),你認(rèn)為這種說法正確嗎?并說明理由.20.(6分)濟(jì)南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測量出滑雪者的出發(fā)點與終點的距離大約840m,他需要多少時間才能到達(dá)終點?將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數(shù)表達(dá)式.21.(6分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標(biāo);如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標(biāo).22.(8分)解不等式組:,并把解集在數(shù)軸上表示出來.23.(8分)均衡化驗收以來,樂陵每個學(xué)校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達(dá)A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達(dá)C處,測得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°,已如A點離地面的高度AB=4米,∠BCA=30°,且B、C、D三點在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.24.(10分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.25.(10分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.26.(12分)先化簡代數(shù)式,再從﹣1,0,3中選擇一個合適的a的值代入求值.27.(12分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為400元和800元;從B糧倉調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為300元和500元.設(shè)B糧倉運(yùn)往C市糧食x噸,求總運(yùn)費(fèi)W(元)關(guān)于x的函數(shù)關(guān)系式.(寫出自變量的取值范圍)若要求總運(yùn)費(fèi)不超過9000元,問共有幾種調(diào)運(yùn)方案?求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.2、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當(dāng)涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。3、D【解析】設(shè)△OAC和△BAD的直角邊長分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點B的坐標(biāo),根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標(biāo)即可得出結(jié)論.

解:設(shè)△OAC和△BAD的直角邊長分別為a、b,

則點B的坐標(biāo)為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,

∴(a+b)×(a﹣b)=a2﹣b2=1.

∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.

故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.解決該題型題目時,要設(shè)出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標(biāo)是關(guān)鍵.4、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機(jī)取一個,取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、B【解析】

根據(jù)左視圖的定義,從左側(cè)會發(fā)現(xiàn)兩個正方形摞在一起.【詳解】從左邊看上下各一個小正方形,如圖故選B.6、D【解析】∵△ABC繞點A順時針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識,得出AD,AF,DC′的長是解題關(guān)鍵.7、D【解析】

解:根據(jù)圖中尺規(guī)作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復(fù)雜作圖;平行線的判定與性質(zhì);三角形的外角性質(zhì).8、A【解析】

根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.9、D【解析】

由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故B正確,不符合題意;

根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;

由△BAE∽△ADC,得到CD與AD的大小關(guān)系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設(shè)AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關(guān)鍵.10、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.11、D【解析】

根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.12、C【解析】

由極差、眾數(shù)、中位數(shù)、平均數(shù)的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數(shù)最多,為2個,眾數(shù)是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數(shù)為×(2.5+3)=2.75,此選項錯誤;D.平均數(shù)為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.【點睛】本題主要考查平均數(shù)、眾數(shù)、中位數(shù)、極差的概念,其中在求中位數(shù)的時候一定要將給出的數(shù)據(jù)按從大到小或者從小到大的順序排列起來再進(jìn)行求解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題解析:∵袋中裝有6個黑球和n個白球,

∴袋中一共有球(6+n)個,

∵從中任摸一個球,恰好是黑球的概率為,

∴,

解得:n=1.

故答案為1.14、【解析】

過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運(yùn)用相似三角形的判定定理和性質(zhì)定理.15、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結(jié)果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根;當(dāng)△=0,方程有兩個,相等的實數(shù)根,也考查了一元二次方程的定義.16、1【解析】

∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.17、y1<y1【解析】

直接利用一次函數(shù)的性質(zhì)分析得出答案.【詳解】解:∵直線經(jīng)過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關(guān)系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標(biāo)特征,正確掌握一次函數(shù)增減性是解題關(guān)鍵.18、13【解析】

根據(jù)正方形的性質(zhì)得出AD=AB,∠BAD=90°,根據(jù)垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據(jù)AAS推出△AED≌△BFA,根據(jù)全等三角形的性質(zhì)得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應(yīng)邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點睛:本題考查了勾股定理,全等三角形的性質(zhì)和判定,正方形的性質(zhì)的應(yīng)用,能求出△AED≌△BFA是解此題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解析】

(1)由C組人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以A組人數(shù)所占比例可得;(2)根據(jù)百分比之和為1求得A組百分比補(bǔ)全圖1,總?cè)藬?shù)乘以B的百分比求得其人數(shù)即可補(bǔ)全圖2;(3)總?cè)藬?shù)乘以樣本中A所占百分比可得;(4)由樣本中浪費(fèi)糧食的人數(shù)所占比例不是20%即可作出判斷.【詳解】(1)這次被抽查的學(xué)生共有25÷50%=50人,扇形統(tǒng)計圖中,“A組”所對應(yīng)的圓心度數(shù)為360°×=108°,故答案為50、108°;(2)圖1中A對應(yīng)的百分比為1-20%-50%=30%,圖2中B類別人數(shù)為50×20%=5,補(bǔ)全圖形如下:(3)估計“每天都會節(jié)約糧食”的學(xué)生人數(shù)為2000×30%=600人;(4)不正確,因為在樣本中浪費(fèi)糧食的人數(shù)所占比例不是20%,所以這種說法不正確.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。瑫r本題還考查了通過樣本來估計總體.20、(1)20s;(2)【解析】

(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時x的值即可得;(2)根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】解:(1)∵該拋物線過點(0,0),∴設(shè)拋物線解析式為y=ax2+bx,將(1,4)、(2,12)代入,得:,解得:,所以拋物線的解析式為y=2x2+2x,當(dāng)y=840時,2x2+2x=840,解得:x=20(負(fù)值舍去),即他需要20s才能到達(dá)終點;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2個單位,再向下平移5個單位后函數(shù)解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.【點睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式及函數(shù)圖象平移的規(guī)律.21、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標(biāo);(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點坐標(biāo).【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標(biāo)為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當(dāng)C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標(biāo)為(1,0).【點睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.22、x≥【解析】分析:分別求解兩個不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點睛:本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.23、(1)12米;(2)(2+8)米【解析】

(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長NM交DB延長線于點P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長NM交DB延長線于點P,則AM=BP=6,由(1)知CD=CE=×AC=4,BC=4,∴PD=BP+BC+CD=6+4+4=6+8,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+8,∴NM=NP﹣MP=6+8﹣4=2+8,∴食堂MN的高度為(2+8)米.【點睛】此題是解直角三角形的實際應(yīng)用,考查直角三角形的性質(zhì),30°角所對的直角邊等于斜邊的一半,銳角三角函數(shù),將已知的線段及角放在相應(yīng)的直角三角形中利用三角函數(shù)解題,由此做相應(yīng)的輔助線是解題的關(guān)鍵.24、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.25、(1)作圖見解析(2)為等腰三角形【解析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論