版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個2.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<03.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.4.如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是()A. B. C.1 D.5.若代數(shù)式,,則M與N的大小關系是()A. B. C. D.6.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m7.關于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是108.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=49.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤210.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠CAB=60°,弦AD平分∠CAB,若AD=6,則AC=_____.12.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.13.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.14.因式分解:3a3﹣3a=_____.15.拋物線y=(x+1)2-2的頂點坐標是______.16.如圖,數(shù)軸上點A所表示的實數(shù)是________________.三、解答題(共8題,共72分)17.(8分)九(1)班同學分成甲、乙兩組,開展“四個城市建設”知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競賽成績,繪制了如圖所示的統(tǒng)計圖.經(jīng)確認,扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤.(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?(3)九(1)班張明、李剛兩位成績優(yōu)秀的同學被選中參加市里組織的“四個城市建設”知識競賽.預賽分為A、B、C、D四組進行,選手由抽簽確定.張明、李剛兩名同學恰好分在同一組的概率是多少?18.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.19.(8分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)20.(8分)兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)獎金金額獲獎人數(shù)20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是;(2)請你補全統(tǒng)計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉盤,黃區(qū)20元、紅區(qū)15元、藍區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?21.(8分)《九章算術》中有一道闡述“盈不足術”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數(shù),物價各幾何?譯文為:現(xiàn)有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.22.(10分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結GC并延長GC交BH于點D,求證:23.(12分)某服裝店用4000元購進一批某品牌的文化衫若干件,很快售完,該店又用6300元錢購進第二批這種文化衫,所進的件數(shù)比第一批多40%,每件文化衫的進價比第一批每件文化衫的進價多10元,請解答下列問題:(1)求購進的第一批文化衫的件數(shù);(2)為了取信于顧客,在這兩批文化衫的銷售中,售價保持了一致.若售完這兩批文化衫服裝店的總利潤不少于4100元錢,那么服裝店銷售該品牌文化衫每件的最低售價是多少元?24.如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據(jù)圖像可知當x<1時,y隨x增大而增大,當x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y1,故(4)不正確;根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax1+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.
拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.2、C【解析】
根據(jù)絕對值的性質:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點睛】絕對值規(guī)律總結:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.3、B【解析】
找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.4、D【解析】
過F作FH⊥AE于H,根據(jù)矩形的性質得到AB=CD,AB//CD,推出四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質得到AF=CE,根據(jù)相似三角形的性質得到,于是得到AE=AF,列方程即可得到結論.【詳解】解:如圖:解:過F作FH⊥AE于H,四邊形ABCD是矩形,AB=CD,AB∥CD,AE//CF,四邊形AECF是平行四邊形,AF=CE,DE=BF,AF=3-DE,AE=,∠FHA=∠D=∠DAF=,∠AFH+∠HAF=∠DAE+∠FAH=90,∠DAE=∠AFH,△ADE~△AFH,AE=AF,,DE=,故選D.【點睛】本題主要考查平行四邊形的性質及三角形相似,做合適的輔助線是解本題的關鍵.5、C【解析】∵,∴,∴.故選C.6、B【解析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數(shù)學問題.7、A【解析】
根據(jù)方差、算術平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術平均數(shù);中位數(shù);眾數(shù).8、D【解析】
A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【點睛】本題主要考查的是實數(shù)的運算,掌握算術平方根、平方根和二次根式的性質以及完全平方公式是解題的關鍵.9、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D10、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉化為求與它相等的其它角的三角函數(shù)值.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
首先連接BD,由AB是⊙O的直徑,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度數(shù),又由AD=6,求得AB的長,繼而求得答案.【詳解】解:連接BD,∵AB是⊙O的直徑,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB?cos60°=4×=2.故答案為2.12、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.13、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數(shù)k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.14、3a(a+1)(a﹣1).【解析】
首先提取公因式3a,進而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.15、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數(shù)的性質.16、【解析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數(shù)為:﹣1+【點睛】本題考查了利用勾股定理求解數(shù)軸上點所表示的數(shù).三、解答題(共8題,共72分)17、(1)見解析;(2)140人;(1).【解析】
(1)分別利用條形統(tǒng)計圖和扇形統(tǒng)計圖得出總人數(shù),進而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達到合格的有多少名學生;(1)根據(jù)題意可以畫出相應的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【詳解】(1)由統(tǒng)計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數(shù)統(tǒng)計有誤,理由:由條形統(tǒng)計圖和扇形統(tǒng)計圖的對應可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙組得5分的人數(shù)統(tǒng)計有誤,正確人數(shù)應為:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如圖得:∵共有16種等可能的結果,所選兩人正好分在一組的有4種情況,∴所選兩人正好分在一組的概率是:.【點睛】本題考查列表法與樹狀圖法、用樣本估計總體、條形統(tǒng)計圖、扇形統(tǒng)計圖,解答本題的關鍵是明確題意,找出所求問題需要的條件.18、(2)見解析;(2)2+.【解析】
(2)連接OC,根據(jù)圓周角定理、切線的性質得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;
(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.19、29.8米.【解析】
作,,根據(jù)題意確定出與的度數(shù),利用銳角三角函數(shù)定義求出與的長度,由求出的長度,即可求出的長度.【詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【點睛】此題考查了解直角三角形的應用﹣仰角俯角問題,熟練掌握銳角三角函數(shù)定義是解本題的關鍵.20、(1)10,5元;(2)補圖見解析;(3)在甲、乙兩超市參加搖獎的50名顧客平均獲獎分別為10元、8.2元;(4).【解析】
(1)根據(jù)中位數(shù)、眾數(shù)的定義解答即可;(2)根據(jù)表格中的數(shù)據(jù)補全統(tǒng)計圖即可;(3)根據(jù)計算平均數(shù)的公式求解即可;(4)根據(jù)扇形統(tǒng)計圖,結合概率公式求解即可.【詳解】(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是=10元,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)5元,故答案為:10元、5元;(2)補全圖形如下:(3)在甲超市平均獲獎為=10(元),在乙超市平均獲獎為=8.2(元);(4)獲得獎金10元的概率是=.【點睛】本題考查了中位數(shù)及眾數(shù)的定義、平均數(shù)的計算公式及簡單概率的求法,熟知這些知識點是解決本題的關鍵.21、共有7人,這個物品的價格是53元.【解析】
根據(jù)題意,找出等量關系,列出一元一次方程.【詳解】解:設共有x人,這個物品的價格是y元,解得答:共有7人,這個物品的價格是53元.【點睛】本題考查了二元一次方程的應用.22、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】
(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;
(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;
(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點睛】本題考查的是切線的性質、相似三角形的判定和性質、勾股定理的應用,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)村離婚協(xié)議范本
- 足部皸裂病因介紹
- (分析)白玉開采項目立項申請報告
- (2024)新能源智能裝備建設項目可行性研究報告寫作模板(一)
- (2024)電子商務新城可行性研究報告申請建議書(一)
- 山東省菏澤市鄆城縣第一中學2023-2024學年七年級上學期第一次月考生物試題(原卷版)-A4
- 2023-2024學年天津市部分區(qū)高三(上)期末語文試卷
- 2023年鈹項目融資計劃書
- 2023年鞋用乳液膠粘劑項目融資計劃書
- 安全培訓課件-安全管理
- 電動絞車的傳動裝置(機械課程設計)
- 李陽100句名言攻克語法
- 個體工商戶設立(變更)登記審核表
- 聚苯板外墻外保溫系統(tǒng)驗收及檢驗細則
- 世界地圖中文版本全集(高清版)
- 世界旅游夏威夷英文介紹簡介English introduction of Hawaii(課堂PPT)
- 彩色學生電子小報手抄報模板消防安全2
- 安全生產(chǎn)中長期規(guī)劃
- 淺談初中數(shù)學教學中拔尖生的培養(yǎng)策略
- JGJT231-2021規(guī)范解讀
- 不合格品及糾正措施處理單(表格模板、doc格式)
評論
0/150
提交評論