2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年克孜勒蘇職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.試求288和123的最大公約數(shù)是

答案:3解析:,,,.∴和的最大公約數(shù)2.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標為()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B3.袋中有4個形狀大小一樣的球,編號分別為1,2,3,4,從中任取2個球,則這2個球的編號之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個球中取出2個,其編號的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號之和為偶數(shù)的有(1,3),(2,4),共2種;則2個球的編號之和為偶數(shù)的概率P=26=13;故選D.4.利用“直接插入排序法”給按從大到小的順序排序,

當插入第四個數(shù)時,實際是插入哪兩個數(shù)之間(

)A.與B.與C.與D.與答案:B解析:先比較與,得;把插入到,得;把插入到,得;5.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.6.OA、OB(O為原點)是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點,且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:17.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B8.算法框圖中表示判斷的是()A.

B.

C.

D.

答案:∵在算法框圖中,表示判斷的是菱形,故選B.9.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24010.設15000件產(chǎn)品中有1000件次品,從中抽取150件進行檢查,則查得次品數(shù)的數(shù)學期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進行檢查,∴查得次品數(shù)的數(shù)學期望為150×100015000=10.故為10.11.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關于點A的對稱點,則有,,代入曲線C的方程,得關于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關于點A的對稱點在曲線C上,因此,曲線C與C1關于點A對稱.12.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.13.設拋物線y2=8x上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準線為x=-2,∵點P到y(tǒng)軸的距離是4,∴到準線的距離是4+2=6,根據(jù)拋物線的定義可知點P到該拋物線焦點的距離是6故選B14.已知圓臺的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺的體積.答案:∵圓臺的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺的體積V=13×3×(4π+4π?25π+25π)=39πcm3.15.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D16.已知點A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()

A.

B.

C.

D.答案:D17.若定義在正整數(shù)有序對集合上的二元函數(shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D18.對于函數(shù)y=f(x),在給定區(qū)間上有兩個數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.19.設甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術評定情況是()

A.甲比乙好

B.乙比甲好

C.甲、乙一樣好

D.難以確定答案:B20.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)21.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F

是棱CD上的動點.

(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標系,不妨設正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當點F是CD的中點時,D1E⊥平面AB1F.(II)當D1E⊥平面AB1F時,F(xiàn)是CD的中點,F(xiàn)(12,1,0)由正方體的結構特征可得:平面AEF的一個法向量為m=(0,0,1),設平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當把m,n都移向這個二面角內(nèi)一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.22.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D23.(幾何證明選講選做題)如圖,梯形,,是對角線和的交點,,則

。

答案:1:6解析:,

,,∵,,而∴。24.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設其交點為M.

(I)證明FM.AB為定值;

(II)設△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.25.如圖,小圓圈表示網(wǎng)絡的結點,結點之間的連線表示它們有網(wǎng)線相聯(lián),連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結點B向結點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D26.已知空間向量a=(1,2,3),點A(0,1,0),若AB=-2a,則點B的坐標是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設B=(x,y,z),因為AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.27.判斷下列結出的輸入語句、輸出語句和賦值語句是否正確?為什么?

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)輸出語句PRINT

A=4

(4)輸出語句PRINT

20.3*2

(5)賦值語句3=B

(6)賦值語句

x+y=0

(7)賦值語句A=B=2

(8)賦值語句

T=T*T.答案:(1)輸入語句

INPUT

a;b;c中,變量名之間應該用“,”分隔,而不能用“;”分隔,故(1)錯誤;(2)輸入語句INPUT

x=3中,命令動詞INPUT后面應寫成“x=“,3,故(2)錯誤;(3)輸出語句PRINT

A=4中,命令動詞PRINT后面應寫成“A=“,4,故(3)錯誤;(4)輸出語句PRINT

20.3*2符合規(guī)則,正確;(5)賦值語句

3=B中,賦值號左邊必須為變量名,故(5)錯誤;(6)賦值語句

x+y=0中,賦值號左邊不能是表達式,故(6)錯誤;(7)賦值語句

A=B=2中.賦值語句不能連續(xù)賦值,故(7)錯誤;(8)賦值語句

T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯誤的是(1)、(2)、(3)、(5)、(6)、(7).28.設橢圓的左焦點為F,AB為橢圓中過點F的弦,試分析以AB為直徑的圓與橢圓的左準線的位置關系.答案:設M為弦AB的中點(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準線相離.29.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B30.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()

A.1:2

B.1:3

C.

D.1:1答案:C31.直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.答案:證明:設點A,B的坐標分別為(x1,y1),(x2,y2)(I)當直線l有存在斜率時,設直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&

y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)(II)當直線l不存在斜率時,設它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(2,0)綜合(1)(2)可知,滿足條件的直線過定點(2,0).32.已知向量=(x,1),=(3,6),且⊥,則實數(shù)x的值為()

A.

B.-2

C.2

D.-答案:B33.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()

A.

B.(-2,0)

C.(-2,1)

D.(0,1)答案:C34.給出以下命題:(1)若非零向量a與b互為負向量,則a∥b;(2)|a|=0是a=0的充要條件;(3)若|a|=|b|,則a=±b;(4)物理學中的作用力和反作用力互為負向量.其中為真命題的是______.答案:(1)若非零向量a與b互為負向量,根據(jù)相反向量的定義可知a∥b,故正確;(2)|a|=0則a=0,a=0則|a|=0,故|a|=0是a=0的充要條件,故正確;(3)若|a|=|b|,則兩向量模等,方向任意,故不正確;(4)物理學中的作用力和反作用力大小相等,方向相反,故互為負向量,故正確故為:(1)(2)(4)35.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.36.用數(shù)學歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設當n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當n=k+1時等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)37.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.38.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是

______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.39.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.40.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7241.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.42.b1是[0,1]上的均勻隨機數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機數(shù).答案:∵b1是[0,1]上的均勻隨機數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機數(shù),故為:[-6,-3]43.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點共圓.44.設方程lgx+x=3的實數(shù)根為x0,則x0所在的一個區(qū)間是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分別畫出等式:lgx=3-x兩邊對應的函數(shù)圖象:如圖.由圖知:它們的交點x0在區(qū)間(2,3)內(nèi),故選B.45.設與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于與的敘述正確的是()

A.=

B.與同向

C.∥

D.與有相同的位置向量答案:C46.設a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1047.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A48.設雙曲線的焦點在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()

A.5

B.

C.

D.答案:C49.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當且僅當x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.50.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個為0C.a(chǎn)和b至少有一個不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價條件是a≠0或b≠0,即兩者中至少有一個不為0,對照四個選項,只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個為0包括了兩個數(shù)都是0,故不對;D中只是兩個數(shù)僅有一個為0,概括不全面,故不對;故選C第2卷一.綜合題(共50題)1.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A2.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.3.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:2234.在△ABC中,D為AB上一點,M為△ABC內(nèi)一點,且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.5.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=16.下面程序框圖輸出的S表示什么?虛線框表示什么結構?答案:由框圖知,當r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結構.7.將一個等腰梯形繞著它的較長的底邊所在的直線旋轉一周,所得的幾何體是(

)答案:B8.若隨機變量ξ~N(2,9),則隨機變量ξ的數(shù)學期望c=()

A.4

B.3

C.2

D.1答案:C9.若定義在正整數(shù)有序對集合上的二元函數(shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D10.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實數(shù)k的取值范圍是______.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實數(shù)k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則點(1,2)一定在圓x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故為:(-4,4),(-4,-2)∪(1,4).11.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B12.下列賦值語句中正確的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C13.已知曲線C1,C2的極坐標方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點的極坐標為______.答案:我們通過聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點為(23,π6).故填:(23,π6).14.知x、y、z均為實數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因為(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因為(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分15.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個涂色,有三種結果,再給最左下邊的上面的涂色,有兩種結果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結果,∴根據(jù)分步計數(shù)原理得到共有3×2×(2+1)=18種結果,故為18.16.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準線的距離之和的最小值為______.答案:依題設P在拋物線準線的投影為P',拋物線的焦點為F,則F(12,0),依拋物線的定義知P到該拋物線準線的距離為|PP'|=|PF|,則點P到點A(0,2)的距離與P到該拋物線準線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.17.根據(jù)給出的空間幾何體的三視圖,用斜二側畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.18.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.19.將1,2,3,9這9個數(shù)字填在如圖的9個空格中,要求每一行從左到右,每一列從上到下分別依次增大,當3,4固定在圖中的位置時,填寫空格的方法數(shù)為()

A.6種

B.12種

C.18種

D.24種

答案:A20.拋擲3顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.21.不等式3≤|5-2x|<9的解集為()

A.[-2,1)∪[4,7)

B.(-2,1]∪(4,7]

C.(-2,-1]∪[4,7)

D.(-2,1]∪[4,7)答案:D22.如圖,在△OAB中,P為線段AB上的一點,,且,則()

A.

B.

C.

D.

答案:A23.雙曲線C的焦點在x軸上,離心率e=2,且經(jīng)過點P(2,3),則雙曲線C的標準方程是______.答案:設雙曲線C的標準方程x2a2-y2b2=1,∵經(jīng)過點P(2,3),∴2a2-3b2=1

①,又∵e=2=a2+b2a

②,由①②聯(lián)立方程組并解得

a2=1,b2=3,雙曲線C的標準方程是x2-y23=1,故為:x2-y23=1.24.下列各式中錯誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C25.設P,Q為△ABC內(nèi)的兩點,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.26.集合{x∈N*|

12

x

∈Z}中含有的元素個數(shù)為()

A.4

B.6

C.8

D.12答案:B27.將(x+y+z)5展開合并同類項后共有______項,其中x3yz項的系數(shù)是______.答案:將(x+y+z)5展開合并同類項后,每一項都是m?xa?yb?zc

的形式,且a+b+c=5,其中,m是實數(shù),a、b、c∈N,構造8個完全一樣的小球模型,分成3組,每組至少一個,共有分法C27種,每一組中都去掉一個小球的數(shù)目分別作為(x+y+z)5的展開式中每一項中x,y,z各字母的次數(shù),小球分組模型與各項的次數(shù)是一一對應的.故將(x+y+z)5展開合并同類項后共有C27=21項.把(x+y+z)5的展開式看成5個因式(x+y+z)的乘積形式.從中任意選3個因式,這3個因式都取x,另外的2個因式分別取y、z,相乘即得含x3yz項,故含x3yz項的系數(shù)為C35=20,故為21;20.28.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進行檢測,這種抽樣方法是()

A.簡單隨機抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B29.過點P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點.求線段AB的長.答案:直線的參數(shù)方程為

x

=

-3

+

32sy

=

12s

(s

為參數(shù)),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數(shù)方程代入上式,得

s2-63s+

10

=

0.設A、B對應的參數(shù)分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.30.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個力f1、f2、f3.試求此三個力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.31.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°32.某校在檢查學生作業(yè)時,抽出每班學號尾數(shù)為4的學生作業(yè)進行檢查,這里主要運用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機抽樣

D.系統(tǒng)抽樣答案:D33.直線l經(jīng)過點A(2,-1)和點B(-1,5),其斜率為()

A.-2

B.2

C.-3

D.3答案:A34.已知|log12x+4i|≥5,則實數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.35.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)36.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標準差為23,則實數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標準差為3a2=23解得a=±2故為:±237.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.38.A、B是直線l上的兩點,AB=4,AC⊥l于A,BD⊥l于B,AC=BD=3,又AC與BD成60°的角,則C、D兩點間的距離是______答案:CD=CA+AB+BD,|CD|=|

CA+AB+BD|,CD=32+32+42+2×

3×3cosθ,θ=120°或60°,CD=32+32+42±32.CD=5或43故為:5或4339.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102040.關于生活中的圓錐曲線,有下面幾個結論:

(1)標準田徑運動場的內(nèi)道是一個橢圓;

(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線;

(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認為正確命題的序號都填上).答案:(1)標準田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)41.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?

答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進而分析方向,正方形的邊對應的向量共有四個方向,邊長為1的正方形的對角線對應的向量共四個方向;1×2的矩形的對角線對應的向量共四個方向;1×3的矩形對角線對應的向量共有四個方向共有16個方向42.設O是坐標原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p43.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關,u與v正相關

B.變量x與y正相關,u與v負相關

C.變量x與y負相關,u與v正相關

D.變量x與y負相關,u與v負相關答案:C44.如圖所示,以直角三角形ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,過點D作⊙O的切線,交BC邊于點E.則BEBC=______.答案:連接CD,∵AC是⊙O的直徑,∴CD⊥AB.∵BC經(jīng)過半徑OC的端點C且BC⊥AC,∴BC是⊙O的切線,而DE是⊙O的切線,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故為12.45.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.46.在下列各圖中,每個圖的兩個變量具有線性相關關系的圖是()

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)答案:D47.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B48.已知菱形ABCD的頂點A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.

(Ⅰ)當直線BD過點(0,1)時,求直線AC的方程;

(Ⅱ)當∠ABC=60°時,求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因為四邊形ABCD為菱形,所以AC⊥BD.于是可設直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因為A,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設A,C兩點坐標分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點坐標為(3n4,n4).由四邊形ABCD為菱形可知,點(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因為四邊形ABCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當n=0時,菱形ABCD的面積取得最大值43.49.賦值語句M=M+3表示的意義()

A.將M的值賦給M+3

B.將M的值加3后再賦給M

C.M和M+3的值相等

D.以上說法都不對答案:B50.已知A(3,0),B(0,3),O為坐標原點,點C在第一象限內(nèi),且∠AOC=60°,設OC=OA+λOB

(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=

3tan60°=33又∵|OB|=3∴λ=3故選D.第3卷一.綜合題(共50題)1.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].2.已知向量=(1,2),=(2,x),且=-1,則x的值等于()

A.

B.

C.

D.答案:D3.設是的相反向量,則下列說法一定錯誤的是()

A.∥

B.與的長度相等

C.是的相反向量

D.與一定不相等答案:D4.△ABC是邊長為1的正三角形,那么△ABC的斜二測平面直觀圖△A′B′C′的面積為(

A.

B.

C.

D.答案:D5.將兩枚質(zhì)地均勻透明且各面分別標有1,2,3,4的正四面體玩具各擲一次,設事件A={兩個玩具底面點數(shù)不相同},B={兩個玩具底面點數(shù)至少出現(xiàn)一個2點},則P(B|A)=______.答案:設事件A={兩個玩具底面點數(shù)不相同},包括以下12個基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個玩具底面點數(shù)至少出現(xiàn)一個2點},則包括以下6個基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.6.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關”.k1,k2,k3的值分別是______(寫出一組即可).答案:設a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,17.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為158.已知非零向量,若與互相垂直,則=(

A.

B.4

C.

D.2答案:D9.已知關于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.10.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D11.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B12.某項選拔共有四輪考核,每輪設有一個問題,能正確回答問題者進入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進入第三輪考核的概率.

(注:本小題結果可用分數(shù)表示)答案:(1)該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進入第四輪才被淘汰的概率.(Ⅱ)該選手至多進入第三輪考核的概率.13.算法的有窮性是指()A.算法必須包含輸出B.算法中每個操作步驟都是可執(zhí)行的C.算法的步驟必須有限D.以上說法均不正確答案:一個算法必須在有限步內(nèi)結束,簡單的說就是沒有死循環(huán)即算法的步驟必須有限故選C.14.已知a≠0,證明關于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.15.一個總體中有100個個體,隨機編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C16.已知一個幾何體是由上下兩部分構成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A17.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°18.拋物線y2=4x的焦點坐標為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B19.在空間直角坐標系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C20.(1)用紅、黃、藍、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問共有多少種不同的擺放方案?

(2)用紅、黃、藍、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.

①求恰有兩個區(qū)域用紅色鮮花的概率;

②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學期望E(S).

答案:(1)根據(jù)分步計數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設M表示事件“恰有兩個區(qū)域用紅色鮮花”,如圖二,當區(qū)域A、D同色時,共有5×4×3×1×3=180種;當區(qū)域A、D不同色時,共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因為A、D為紅色時,共有4×3×3=36種;B、E為紅色時,共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=121.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結果,∴由古典概型公式得到P=3C35=310,故選B.22.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件答案:C23.下列對一組數(shù)據(jù)的分析,不正確的說法是()

A.數(shù)據(jù)極差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

B.數(shù)據(jù)平均數(shù)越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

C.數(shù)據(jù)標準差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

D.數(shù)據(jù)方差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定答案:B24.讀下面的程序:

上面的程序在執(zhí)行時如果輸入6,那么輸出的結果為()

A.6

B.720

C.120

D.1答案:B25.已知不等式a≤對x取一切負數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.26.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B27.已知在△ABC和點M滿足

MA+MB+MC=0,若存在實數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點M滿足MA+MB+MC=0,知點M為△ABC的重心,設點D為底邊BC的中點,則AM=23AD=23×

12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:328.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標準方程為______.答案:設雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=129.已知空間四邊形ABCD中,M、G分別為BC、CD的中點,則等于()

A.

B.

C.

D.

答案:A30.直線(3+4)x+(4-6)y-14-2=0(∈R)恒過定點A,則點A的坐標為(

)。答案:(2,-1)31.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.32.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.33.設拋物線x2=12y的焦點為F,經(jīng)過點P(2,1)的直線l與拋物線相交于A、B兩點,若點P恰為線段AB的中點,則|AF|+|BF|=______.答案:過點A,B,P分別作拋物線準線y=-3的垂線,垂足為C,D,Q,據(jù)拋物線定義,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故為834.200輛汽車經(jīng)過某一雷達地區(qū),時速頻率分布直方圖如圖所示,則時速不低于60km/h的汽車數(shù)量為

______輛.答案:時速不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論