2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年四川鐵道職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點A看點B的仰角與從點B看點A的俯角互為內(nèi)錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.2.x=5

y=6

PRINT

x+y=11

END

上面程序運行時輸出的結(jié)果是()

A.x+y=11

B.11

C.x+y

D.出錯信息答案:B3.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為______.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.4.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D5.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內(nèi)心,(這是由于,,而,所以,點是的內(nèi)心).即弦與相切.6.關(guān)于生活中的圓錐曲線,有下面幾個結(jié)論:

(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是一個橢圓;

(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線;

(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認(rèn)為正確命題的序號都填上).答案:(1)標(biāo)準(zhǔn)田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設(shè)備,其軸截面與天線設(shè)備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風(fēng)塔,其軸截面與通風(fēng)塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)7.過拋物線y=ax2(a>0)的焦點F作一直線交拋物線交于P、Q兩點,若線段PF、FQ的長分別為p、q,則1p+1q=______.答案:設(shè)PQ的斜率k=0,因拋物線焦點坐標(biāo)為(0,14a),把直線方程y=14a

代入拋物線方程得x=±12a,∴PF=FQ=12a,從而

1p+1q=2a+2a=4a,故為:4a.8.一個算法的流程圖如圖所示,則輸出的S值為______.答案:根據(jù)程序框圖,題意為求:s=2+4+6+8,計算得:s=20,故為:20.9.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設(shè)這位同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學(xué)得300分的概率為

;這名同學(xué)至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。10.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:211.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.12.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標(biāo)

()

A.(-8,15)

B.(0,3)

C.(-,)

D.(1,)答案:A13.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C14.下列物理量中,不能稱為向量的是()A.質(zhì)量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;質(zhì)量只有大小沒有方向,因此質(zhì)量不是向量.而速度、位移、力既有大小,又有方向,因此它們都是向量.故選A.15.對于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)

(n是不小于2的正整數(shù)),對于任意p,q∈1,2,3,…,n,當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當(dāng)p<q時有ip>iq,則稱ip,iq是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對逆序數(shù)對,故為:4.16.已知兩點A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A17.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標(biāo)為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準(zhǔn)線方程和準(zhǔn)線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標(biāo)準(zhǔn)方程為y218-x28=1.(2)由(1)得,雙曲線的準(zhǔn)線方程為y=±1826x;準(zhǔn)線間的距離為2a2c=2×1826=182613.18.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)19.(1+2x)7的展開式中第4項的系數(shù)是______

(用數(shù)字作答)答案:(1+2x)7的展開式的通項為Tr+1=Cr7?(2x)r∴(1+2x)7的展開式中第4項的系數(shù)是C37?23=280,故為:280.20.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()

A.101

B.808

C.1212

D.2012答案:B21.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點,且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:1622.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數(shù)a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點,∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.23.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()

A.

B.

C.

D.答案:C24.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.25.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.26.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.27.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應(yīng)角相等;

(2)當(dāng)a>1時,函數(shù)y=ax是增函數(shù).答案:(1)若兩個三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).28.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)29.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實數(shù),而A,B,C中的的范圍有各自的限制30.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標(biāo),和圓C關(guān)于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(biāo)(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.31.某幾何體的三視圖如圖所示,則這個幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22

×3=33故為:33.32.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=1633.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達(dá)點Q,則點Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C34.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102035.已知圓O的兩弦AB和CD延長相交于E,過E點引EF∥CB交AD的延長線于F,過F點作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.36.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想數(shù)列{an}的通項公式;

(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當(dāng)n=1時顯然成立.假設(shè)當(dāng)n=k(k≥1)時成立,即ak=2k+1則當(dāng)n=k+1時,ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.37.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()

A.P>Q

B.P=Q

C.P<Q

D.由a的取值確定答案:C38.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設(shè)平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設(shè)AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.39.設(shè)A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3540.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.41.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B42.當(dāng)太陽光線與水平面的傾斜角為60°時,要使一根長為2m的細(xì)桿的影子最長,則細(xì)桿與水平地面所成的角為()

A.15°

B.30°

C.45°

D.60°答案:B43.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時,tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.44.要從10名女生與5名男生中選出6名學(xué)生組成課外活動小組,則符合按性別比例分層抽樣的概率為()

A.

B.

C.

D.

答案:C45.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()

A.5-

B.5+

C

D.10答案:B46.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}47.平面上動點M到定點F(3,0)的距離比M到直線l:x+1=0的距離大2,則動點M滿足的方程()

A.x2=6y

B.x2=12y

C.y2=6x

D.y2=12x答案:D48.若圓臺的上下底面半徑分別是1和3,它的側(cè)面積是兩底面面積和的2倍,則圓臺的母線長是()A.2B.2.5C.5D.10答案:設(shè)母線長為l,則S側(cè)=π(1+3)l=4πl(wèi).S上底+S下底=π?12+π?32=10π.據(jù)題意4πl(wèi)=20π即l=5,故選C.49.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.50.在極坐標(biāo)系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=2第2卷一.綜合題(共50題)1.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While

i<=63s=s+2^ii=i+1WendPrint

send2.已知x+2y+3z=1,則x2+y2+z2取最小值時,x+y+z的值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3取等號,此時y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.3.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.4.甲、乙兩位運動員在5場比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績穩(wěn)定B..x甲>.x乙;乙比甲成績穩(wěn)定C..x甲<.x乙;甲比乙成績穩(wěn)定D..x甲<.x乙;乙比甲成績穩(wěn)定答案:5場比賽甲的得分為16、17、28、30、34,5場比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績穩(wěn)定故選D.5.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗,甲勝乙的概率為23.

(1)求比賽三局甲獲勝的概率;

(2)求甲獲勝的概率;

(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3

(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3

(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881

)=10727.6.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應(yīng)的關(guān)系選A.故選A.7.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>n2時,f(2k+1)-f(2k)等于______.答案:因為假設(shè)n=k時,f(2k)=1+12+13+…+12k,當(dāng)n=k+1時,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+18.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)600到OD,則PD的長為()

A.3

B.

C.

D.

答案:D9.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。10.如圖所示的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.11.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.12.設(shè)隨機(jī)變量ξ的概率分布如表所示:

求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);

(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)13.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D14.如圖,在直角坐標(biāo)系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數(shù)),平面上的點P滿足PA+PB=6m.

(1)試求點P的軌跡C1的方程;

(2)若點(x,y)在曲線C1上,求證:點(x3,y22)一定在某圓C2上;

(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.答案:(1)由題意可得點P的軌跡C1是以A,B為焦點的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因為點N恰好是線段CM的中點,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)15.已知大于1的正數(shù)x,y,z滿足x+y+z=33.

(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時,等號成立.故所求的最小值是3.16.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A17.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D18.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(

A.2

B.5

C.2或5

D.或答案:A19.不等式﹣2x+1>0的解集是(

).答案:{x|x<}20.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.21.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.22.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進(jìn)行了5次試驗,根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6

表中有一個數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為()A.68B.68.2C.69D.75答案:設(shè)表中有一個模糊看不清數(shù)據(jù)為m.由表中數(shù)據(jù)得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.23.設(shè)定義域為[x1,x2]的函數(shù)y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標(biāo)原點,點M是C上任意一點,向量OA=(x1,y1),OB=(x2,y2),OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量ON=λOA+(1-λ)OB,現(xiàn)定義“函數(shù)y=f(x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指|MN|≤k恒成立,其中k>0,k為常數(shù).根據(jù)上面的表述,給出下列結(jié)論:

①A、B、N三點共線;

②直線MN的方向向量可以為a=(0,1);

③“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)1下線性近似”;

④“函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”.

其中所有正確結(jié)論的番號為______.答案:由ON=λOA+(1-λ)OB,得ON-OB=λ(OA-OB),即BN=λBA故①成立;∵向量OA=(x1,y1),OB=(x2,y2),向量ON=λOA+(1-λ)OB,∴向量ON的橫坐標(biāo)為λx1+(1-λ)x2(0<λ<1),∵OM=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),∴MN∥y軸∴直線MN的方向向量可以為a=(0,1),故②成立對于函數(shù)y=5x2在[0,1]上,易得A(0,0),B(1,5),所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),從而|MN|=52(1-λ)2-(1-λ))2=25[(λ-12)2+14]2≤54,故函數(shù)y=5x2在[0,1]上可在標(biāo)準(zhǔn)54下線性近似”,故④成立,③不成立,故為:①②④24.把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點,那么這些向量的終點到起點的距離都等于1,所以,由圓的定義得,這些向量的終點所構(gòu)成的圖形是半徑為1的圓.25.用反證法證明命題“三角形中最多只有一個內(nèi)角是鈍角”時,則假設(shè)的內(nèi)容是()

A.三角形中有兩個內(nèi)角是鈍角

B.三角形中有三個內(nèi)角是鈍角

C.三角形中至少有兩個內(nèi)角是鈍角

D.三角形中沒有一個內(nèi)角是鈍角答案:C26.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}27.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個式中正確的是()

A.①②

B.②③

C.①④

D.②④答案:C28.下列各組向量中不平行的是()A.a(chǎn)=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項A中,b=-2a?a∥b;選項B中有:d=-3c?d∥c,選項C中零向量與任意向量平行,選項D,事實上不存在任何一個實數(shù)λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應(yīng)選:D29.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是

______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.30.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.31.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).32.函數(shù)f(x)=x2+2的單調(diào)遞增區(qū)間為

______.答案:如圖所示:函數(shù)的遞增區(qū)間是:[0,+∞)故為:[0,+∞)33.對于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”現(xiàn)有四個函數(shù):

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=x3∈[0,1].③對于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=sinπ2x∈[0,1].④對于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個解,即y=lnx

和y=x的圖象有兩個交點,這與y=lnx和y=x的圖象沒有公共點相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.34.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.35.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:236.寫出按從小到大的順序重新排列x,y,z三個數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個數(shù)值;(2).從三個數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.37.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B38.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.39.某人射擊一次擊中的概率為0.6,經(jīng)過3次射擊,此人至少有兩次擊中目標(biāo)的概率為()

A.

B.

C.

D.答案:A40.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A41.已知A,B兩點的極坐標(biāo)為(6,)和(8,),則線段AB中點的直角坐標(biāo)為()

A.(,-)

B.(-,)

C.(,-)

D.(-,-)答案:D42.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定

是()

A.所有不能被2整除的整數(shù)都是偶數(shù)

B.所有能被2整除的整數(shù)都不是偶數(shù)

C.存在一個不能被2整除的整數(shù)是偶數(shù)

D.存在一個能被2整除的整數(shù)不是偶數(shù)答案:D43.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.44.三行三列的方陣.a11a12

a13a21a22

a23a31a32

a33.中有9個數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個數(shù)中任取3個數(shù),共有C39;從三行三列的方陣中任取三個數(shù),使它們不同行且不同列:從第一行中任取一個數(shù)有C13種方法,則第二行只能從另外兩列中的兩個數(shù)任取一個有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個數(shù),則它們不同行且同列的概率P=6C39=114.故選C.45.若過點A(4,0)的直線l與曲線(x-2)2+y2=1有公共點,則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點,∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]46.如圖所示,已知P是平行四邊形ABCD所在平面外一點,連結(jié)PA、PB、PC、PD,點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點,順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點共面.47.點P1,P2是線段AB的2個三等分點,若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()

A.3,

B.3,

C.2,

D.2,1答案:C48.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設(shè)n=k時1-xk2>0,那么當(dāng)n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時,1-x12<0;設(shè)n=k時1-xk2<0,那么當(dāng)n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+149.已知,,且與垂直,則實數(shù)λ的值為()

A.±

B.1

C.-

D.答案:D50.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C第3卷一.綜合題(共50題)1.用數(shù)學(xué)歸納法證明等式時,第一步驗證n=1時,左邊應(yīng)取的項是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D2.已知離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點P(3,1).

(1)求橢圓C的方程;

(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若OM?ON=463tan∠MON(O為坐標(biāo)原點),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點P(3,1).∴3a

2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)3.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進(jìn)行施化肥量x對產(chǎn)量y影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

施化肥量x15202530354045棉花產(chǎn)量y330345365405445450455(1)畫出散點圖;

(2)判斷是否具有相關(guān)關(guān)系.答案:(1)根據(jù)已知表格中的數(shù)據(jù)可得施化肥量x和產(chǎn)量y的散點圖如下所示:(2)根據(jù)(1)中散點圖可知,各組數(shù)據(jù)對應(yīng)點大致分布在一個條形區(qū)域內(nèi)(一條直線附近)故施化肥量x和產(chǎn)量y具有線性相關(guān)關(guān)系.4.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.5.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A6.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C7.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為48.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=19.某個幾何體的三視圖如圖所示,則該幾何體的體積是()A.23B.3C.334D.332答案:由三視圖可知該幾何體是直三棱柱,高為1,底面三角形一邊長為2,此邊上的高為3,所以V=Sh=12×2×3×1=3故選B.10.位于直角坐標(biāo)原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()

A.

B.

C.

D.答案:D11.如圖為某平面圖形用斜二測畫法畫出的直觀圖,則其原來平面圖形的面積是(

A.4

B.

C.

D.8

答案:A12.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1013.如圖,已知PA是圓O的切線,切點為A,PO交圓O于B、C兩點,PA=3,PB=1,則∠C=______.答案:∵PA切圓O于A點,PBC是圓O的割線∴PA2=PB?PC,可得(3)2=1×PC,得PC=3∵點O在BC上,即BC是圓O的直徑,∴∠ABC=90°,由弦切角定理,得∠PAB=∠C,∠PAC=90°+∠C∴△PAC中,根據(jù)正弦定理,得PAsinC=PCsin∠PAC即3sinC=3sin(90°+C),整理得tanC=33∵∠C是銳角,∴∠C=30°.故為:30°14.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D15.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點,且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:1616.

(理)

在長方體ABCD-A1B1C1D1中,以為基底表示,其結(jié)果是()

A.

B.

C.

D.答案:C17.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C18.拋物線的頂點在原點,焦點與橢圓=1的一個焦點重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A19.設(shè)一次試驗成功的概率為p,進(jìn)行100次獨立重復(fù)試驗,當(dāng)p=______時,成功次數(shù)的標(biāo)準(zhǔn)差的值最大,其最大值為______.答案:由獨立重復(fù)試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;520.設(shè)A(1,-1,1),B(3,1,5),則線段AB的中點在空間直角坐標(biāo)系中的位置是()

A.在y軸上

B.在xOy面內(nèi)

C.在xOz面內(nèi)

D.在yOz面內(nèi)答案:C21.算法:第一步

x=a;第二步

若b>x則x=b;第三步

若c>x,則x=c;

第四步

若d>x,則x=d;

第五步

輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.22.構(gòu)成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B23.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當(dāng)θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時成立)∴當(dāng)θ=π4時,f(θ)g(θ)的最小值為94.24.在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,-3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).25.設(shè)a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.26.直線上與點的距離等于的點的坐標(biāo)是_______。答案:,或27.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(

)

A.

B.

C.

D.

答案:D28.下列說法:

①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選擇的模型比較合適;

②用相關(guān)指數(shù)可以刻畫回歸的效果,值越大說明模型的擬和效果越好;

③比較兩個模型的擬和效果,可以比較殘差平方和的大小,殘差平方和越小的模型擬和效果越好.

其中說法正確的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C29.在△ABC中,=,=,且=2,則等于()

A.+

B.+

C.+

D.+答案:A30.一個試驗要求的溫度在69℃~90℃之間,用分?jǐn)?shù)法安排試驗進(jìn)行優(yōu)選,則第一個試點安排在(

)。(取整數(shù)值)答案:82°31.下列各圖象中,哪一個不可能是函數(shù)

y=f(x)的圖象()A.

B.

C.

D.

答案:函數(shù)表示每個輸入值對應(yīng)唯一輸出值的一種對應(yīng)關(guān)系.選項D,對于x=1時有兩個輸出值與之對應(yīng),故不是函數(shù)圖象故選D.32.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當(dāng)m為何值時,α2+β2有最小值?并求出這個最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時,α2+β2有最小值,最小值是12.33.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B34.過拋物線y2=4x的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點到準(zhǔn)線的距離為4,設(shè)A,B兩點到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.35.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一點,F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p36.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.

(1)求證:M點的軌跡是拋物線,并求出其方程;

(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:

1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個定點?若經(jīng)過,請求出定點坐標(biāo),否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設(shè)A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設(shè)p(x0,y0)設(shè)AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論