版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年安徽現(xiàn)代信息工程職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.|a|=4,a與b的夾角為30°,則a在b方向上的投影為_(kāi)_____.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:232.設(shè)集合A={1,2},={2,3},C={2,3,4},則(A∩B)∪C=______.答案:由題得:A∩B={2},又因?yàn)镃={2,3,4},(故A∩B)∪C={2,3,4}.故為
{2,3,4}.3.某程序圖如圖所示,該程序運(yùn)行后輸出的結(jié)果是______.答案:由圖知運(yùn)算規(guī)則是對(duì)S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運(yùn)行后輸出的結(jié)果是:k=4+1=5.故為:54.有一個(gè)正四棱錐,它的底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長(zhǎng)應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開(kāi)時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最小.設(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(
a+3a)2=2x2,解得:x=6+22a.故選A5.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C6.有一個(gè)容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(
)
A.10組
B.9組
C.8組
D.7組答案:B7.將4封不同的信隨機(jī)地投入到3個(gè)信箱里,記有信的信箱個(gè)數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是8.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開(kāi)輔平,得出圓柱的側(cè)面展開(kāi)圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開(kāi)圖的長(zhǎng)方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長(zhǎng)度最短.所以最短路線就是側(cè)面展開(kāi)圖中長(zhǎng)方形的一條對(duì)角線.如圖所示.9.把38化為二進(jìn)制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗(yàn)證所給的四個(gè)選項(xiàng),在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過(guò)驗(yàn)證知道,B中的二進(jìn)制表示的數(shù)字換成十進(jìn)制以后得到38,故選B.10.若事件與相互獨(dú)立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時(shí)發(fā)生,因?yàn)槎呦嗷オ?dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式得:.11.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對(duì)應(yīng)變換作用下新曲線上的對(duì)應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x12.指數(shù)函數(shù)y=ax的圖象經(jīng)過(guò)點(diǎn)(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.13.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A14.若點(diǎn)(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實(shí)數(shù)a的取值范圍是()
A.-2<a<2
B.0<a<2
C.a(chǎn)<-2或a>2
D.a(chǎn)=±2答案:A15.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(
)
A.
B.
C.
D.答案:B16.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫(huà)y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D17.設(shè)某種動(dòng)物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是______.答案:設(shè)活過(guò)10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是23故為:23.18.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為_(kāi)_____.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.19.“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù),?a=0且b≠0,∴“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件,故選B.20.在甲、乙兩個(gè)盒子里分別裝有標(biāo)號(hào)為1、2、3、4的四個(gè)小球,現(xiàn)從甲、乙兩個(gè)盒子里各取出1個(gè)小球,每個(gè)小球被取出的可能性相等.
(1)求取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率;
(3)求取出的兩個(gè)小球上標(biāo)號(hào)之和大于5整除的概率.答案:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數(shù)為16種.(1)其中取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個(gè)小球上標(biāo)號(hào)為相鄰整數(shù)的概率P=38;(2)其中取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個(gè)小球上標(biāo)號(hào)之和能被3整除的概率為516;(3)其中取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個(gè)小球上標(biāo)號(hào)之和大于5的概率P=3821.已知拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,N為拋物線上的一點(diǎn),且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設(shè)N到準(zhǔn)線的距離等于d,由拋物線的定義可得d=|NF|,
由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.22.一口袋內(nèi)裝有5個(gè)黃球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時(shí)停止,停止時(shí)取球的次數(shù)ξ是一個(gè)隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)223.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿足xn<xn+1,或者對(duì)任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+124.甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再?gòu)囊掖须S機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒(méi)有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒(méi)有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.25.曲線(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D26.已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?答案:(1)證明:由題意可知:動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離等于M到定直線x=-1的距離根據(jù)拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設(shè)A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過(guò)定點(diǎn)M(1,0),(ii)設(shè)p(x0,y0)設(shè)AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標(biāo)∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過(guò)點(diǎn)(x0+2,-y0)27.曲線與坐標(biāo)軸的交點(diǎn)是(
)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為28.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A29.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫(huà)出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.30.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問(wèn):(1)這種猜想,你認(rèn)為正確嗎?
(2)不管猜想是否正確,這個(gè)結(jié)論是通過(guò)什么推理方法得到的?
(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類(lèi)比推理的方法;(3)由類(lèi)比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立31.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.32.已知F1(-2,0),F(xiàn)2(2,0)兩點(diǎn),曲線C上的動(dòng)點(diǎn)P滿足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l經(jīng)過(guò)點(diǎn)M(0,3),交曲線C于A,B兩點(diǎn),且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點(diǎn),長(zhǎng)軸長(zhǎng)為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點(diǎn),則有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因?yàn)镸A=12MB,所以A為MB的中點(diǎn),從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.33.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為_(kāi)_____.答案:x2+y2
表示直線2x+y+5=0上的點(diǎn)與原點(diǎn)的距離,其最小值就是原點(diǎn)到直線2x+y+5=0的距離|0+0+5|4+1=5,故為:5.34.在△ABC所在平面存在一點(diǎn)O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,設(shè)OB+OC=OD∴O是AD的中點(diǎn),要求面積之比的兩個(gè)三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.35.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B36.在極坐標(biāo)系中,圓ρ=2cosθ與方程θ=(ρ>0)所表示的圖形的交點(diǎn)的極坐標(biāo)是(
)
A.(1,1)
B.(1,)
C.(,)
D.(,)答案:C37.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()
A.6塊
B.7塊
C.8塊
D.9塊答案:B38.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.39.輸入3個(gè)數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT
m,n,kr=m
MOD
nWHILE
r<>0m=nn=rr=m
MOD
nWENDr=k
MOD
nWHILE
r<>0k=nn=rr=k
MOD
nWENDPRINT
nEND40.拋物線C:y=x2上兩點(diǎn)M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因?yàn)镸N=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.41.集合A={1,2}的子集有幾個(gè)()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4個(gè).故選B.42.下列敘述中:
①變量間關(guān)系有函數(shù)關(guān)系,還有相關(guān)關(guān)系;②回歸函數(shù)即用函數(shù)關(guān)系近似地描述相關(guān)關(guān)系;③=x1+x2+…+xn;④線性回歸方程一定可以近似地表示所有相關(guān)關(guān)系.其中正確的有()
A.①②③
B.①②④
C.①③
D.③④答案:A43.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()
A.
B.
C.
D.答案:A44.設(shè)二項(xiàng)式(33x+1x)n的展開(kāi)式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對(duì)于二項(xiàng)式(33x+1x)n的展開(kāi)式的所有二項(xiàng)式系數(shù)的和為S,則S=2n,令x=1,可得其展開(kāi)式的各項(xiàng)系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.45.用三段論的形式寫(xiě)出下列演繹推理.
(1)若兩角是對(duì)頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對(duì)頂角;
(2)矩形的對(duì)角線相等,正方形是矩形,所以,正方形的對(duì)角線相等.答案:(1)兩個(gè)角是對(duì)頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對(duì)頂角.結(jié)論(2)每一個(gè)矩形的對(duì)角線相等,大前提正方形是矩形,小前提正方形的對(duì)角線相等.結(jié)論46.在下列4個(gè)命題中,是真命題的序號(hào)為()
①3≥3;
②100或50是10的倍數(shù);
③有兩個(gè)角是銳角的三角形是銳角三角形;
④等腰三角形至少有兩個(gè)內(nèi)角相等.
A.①
B.①②
C.①②③
D.①②④答案:D47.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.48.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略49.在樣本的頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)長(zhǎng)方形的面積等于其他十個(gè)小長(zhǎng)方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個(gè)長(zhǎng)方形的面積S則其他十個(gè)小長(zhǎng)方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A50.若函數(shù),則下列結(jié)論正確的是(
)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對(duì)于時(shí)有是一個(gè)偶函數(shù)第2卷一.綜合題(共50題)1.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C2.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。3.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無(wú)法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無(wú)法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.4.用0,1,2,3組成沒(méi)有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)有()
A.8個(gè)
B.10個(gè)
C.18個(gè)
D.24個(gè)答案:A5.直線l1過(guò)點(diǎn)P(0,-1),且傾斜角為α=30°.
(I)求直線l1的參數(shù)方程;
(II)若直線l1和直線l2:x+y-2=0交于點(diǎn)Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))
(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)6.平面上動(dòng)點(diǎn)M到定點(diǎn)F(3,0)的距離比M到直線l:x+1=0的距離大2,則動(dòng)點(diǎn)M滿足的方程()
A.x2=6y
B.x2=12y
C.y2=6x
D.y2=12x答案:D7.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱(chēng)點(diǎn)的極坐標(biāo)是______.答案:由點(diǎn)的極坐標(biāo)的意義可得,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱(chēng)點(diǎn)到極點(diǎn)的距離等于ρ,極角為π+θ,故點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對(duì)稱(chēng)點(diǎn)的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).8.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()
A.若K2的觀測(cè)值為k=6.635,而p(K2≥6.635)=0.010,故我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推判出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:C9.在同一坐標(biāo)系下,函數(shù)y=ax,y=bx,y=cx,y=dx的圖象如圖,則a、b、c、d、1之間從小到大的順序是______.答案:作直線x=1與各圖象相交,交點(diǎn)的縱坐標(biāo)即為底數(shù),故從下到上依次增大.所以b<a<1<d<c故為:b,a,1,d,c10.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當(dāng)a>0時(shí),有1<a,即a>1;當(dāng)a<0時(shí),不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應(yīng)選:A11.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()
A.A,B,C
B.A,B,D
C.A,C,D
D.B,C,D答案:C12.O為△ABC平面上一定點(diǎn),該平面上一動(dòng)點(diǎn)p滿足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)
,λ>0},則△ABC的()一定屬于集合M.A.重心B.垂心C.外心D.內(nèi)心答案:如圖:D是BC的中點(diǎn),在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,設(shè)t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中點(diǎn),∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常數(shù),則AP∥AD,∴點(diǎn)P得軌跡是直線AD,△ABC的重心一定屬于集合M,故選A.13.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()
A.O、A、B、C四點(diǎn)不共線
B.O、A、B、C四點(diǎn)共面,但不共線
C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線
D.O、A、B、C四點(diǎn)不共面答案:D14.一圓形紙片的圓心為O點(diǎn),Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn),把紙片折疊使點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于P點(diǎn),當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是______.
①圓
②雙曲線
③拋物線
④橢圓
⑤線段
⑥射線.答案:由題意可得,CD是線段AQ的中垂線,∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點(diǎn)P到兩個(gè)定點(diǎn)O、Q的距離之和等于定長(zhǎng)R(R>|OQ|),由橢圓的定義可得,點(diǎn)P的軌跡為橢圓,故為④.15.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1答案:B16.已知大于1的正數(shù)x,y,z滿足x+y+z=33.
(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.
(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.17.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.18.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線,則這條直線與這個(gè)平面垂直;
②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直.
上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無(wú)數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無(wú)數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直,顯然正確.故選D.19.已知焦點(diǎn)在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A20.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為_(kāi)_____.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.21.下列4個(gè)命題
㏒1/2x>㏒1/3x
其中的真命題是()
、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確22.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C23.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個(gè)事件均互斥
D.任意兩個(gè)事件均不互斥答案:B24.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略25.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因?yàn)閤的最大值為3,故x-3<0,原不等式等價(jià)于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值為3,(6分)設(shè)x2-5x+p-2=0
的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和
x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當(dāng)p=-2時(shí),原不等式無(wú)解,檢驗(yàn)得:p=8
符合題意,故p=8.(12分)26.設(shè)函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),則()A.a(chǎn)>12B.a(chǎn)<12C.a(chǎn)≥12D.a(chǎn)≤12答案:∵函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),∴1-2a>0,∴a<12.故選B.27.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱(chēng)軸距離的取值范圍為()
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]答案:B28.某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為23,科目B每次考試成績(jī)合格的概率均為12.假設(shè)各次考試成績(jī)合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書(shū)的概率;
(Ⅱ)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為ξ,求ξ的數(shù)學(xué)期望Eξ.答案:設(shè)“科目A第一次考試合格”為事件A1,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B1,“科目B補(bǔ)考合格”為事件B2.(Ⅰ)不需要補(bǔ)考就獲得證書(shū)的事件為A1?B1,注意到A1與B1相互獨(dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即該考生不需要補(bǔ)考就獲得證書(shū)的概率為13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即該考生參加考試次數(shù)的數(shù)學(xué)期望為83.29.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè)球,則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是
______.答案:設(shè)含紅球個(gè)數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時(shí),表示從中取出2個(gè)球,其中不含紅球,當(dāng)ξ=1時(shí),表示從中取出2個(gè)球,其中1個(gè)紅球,1個(gè)黃球,當(dāng)ξ=2時(shí),表示從中取出2個(gè)球,其中2個(gè)紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.30.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對(duì)應(yīng)邊長(zhǎng)之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:931.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡(jiǎn)單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡(jiǎn)單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法故選A32.現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.33.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C34.已知||=3,A、B分別在x軸和y軸上運(yùn)動(dòng),O為原點(diǎn),則動(dòng)點(diǎn)P的軌跡方程是()
A.
B.
C.
D.答案:B35.設(shè)點(diǎn)P(t2+2t,1)(t>0),則|OP|(O為坐標(biāo)原點(diǎn))的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當(dāng)t=2時(shí)取得等號(hào).故選D.36.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長(zhǎng)為6的圓的方程為_(kāi)_____.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長(zhǎng)為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.37.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。38.某簡(jiǎn)單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.39.某公司一年購(gòu)買(mǎi)某種貨物400噸,每次都購(gòu)買(mǎi)x噸,運(yùn)費(fèi)為4萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為4x萬(wàn)元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x=______噸.答案:某公司一年購(gòu)買(mǎi)某種貨物400噸,每次都購(gòu)買(mǎi)x噸,則需要購(gòu)買(mǎi)400x次,運(yùn)費(fèi)為4萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為4x萬(wàn)元,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為400x?4+4x萬(wàn)元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時(shí),等號(hào)成立即每次購(gòu)買(mǎi)20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最?。蕿椋?0.40.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()
A.
B.2
C.
D.答案:C41.在極坐標(biāo)系中,直線l經(jīng)過(guò)圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=1,所以直線l與極軸的交點(diǎn)的極坐標(biāo)為(1,0).故為:(1,0).42.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱(chēng)命題,否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.43.對(duì)賦值語(yǔ)句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個(gè)變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來(lái)表明賦給某一個(gè)變量一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡(jiǎn)單題,賦值語(yǔ)句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。44.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.45.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫(huà)出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計(jì)該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B46.已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過(guò)點(diǎn)M(0,2),求橢圓c的方程答案:若焦點(diǎn)在x軸很明顯,過(guò)點(diǎn)M(0,2)點(diǎn)M即橢圓的上端點(diǎn),所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點(diǎn)在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.47.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長(zhǎng)為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.48.不等式﹣2x+1>0的解集是(
).答案:{x|x<}49.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C50.若正四面體ABCD的棱長(zhǎng)為1,M是AB的中點(diǎn),則MC
?MD
=______.答案:在正四面體中,因?yàn)镸是AB的中點(diǎn),所以CM=12(CA+CB),DM=12(DA+DB),所以CM?DM=12(CA+CB)?12(DA+DB)=14(CA?DA+CB?DA+CA?DB+CB?DB)=14(1×1×cos60°+0+0+1×1×cos60°)=14×1=14.所以MC
?MD
=CM?DM=14.故為:
1
4
.第3卷一.綜合題(共50題)1.(本題滿分12分)已知對(duì)任意的平面向量,把繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)角,得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)角得到點(diǎn)P
①已知平面內(nèi)的點(diǎn)A(1,2),B,把點(diǎn)B繞點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn)后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)
②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時(shí)針?lè)较蛐D(zhuǎn)后得到的點(diǎn)的軌跡是曲線,求原來(lái)曲線C的方程.答案:解:
……2分
……6分
解得x="0,y="-1
……7分②
…………10分
即…………11分又x’2-y’2="1
"……12分
……13分
化簡(jiǎn)得:
……14分解析:略2.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:43.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B4.如圖示程序運(yùn)行后的輸出結(jié)果為_(kāi)_____.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時(shí)i=9∴ai的值為21故為:215.已知直線過(guò)點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C6.已知拋物線方程為y2=2px(p>0),過(guò)該拋物線焦點(diǎn)F且不與x軸垂直的直線AB交拋物線于A,B兩點(diǎn),過(guò)點(diǎn)A,點(diǎn)B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點(diǎn),那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B7.已知線段AB的兩端點(diǎn)坐標(biāo)為A(9,-3,4),B(9,2,1),則線段AB與坐標(biāo)平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內(nèi)的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C8.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.9.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>10.下列各組集合,表示相等集合的是()
①M(fèi)={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對(duì)答案:①中M中表示點(diǎn)(3,2),N中表示點(diǎn)(2,3);②中由元素的無(wú)序性知是相等集合;③中M表示一個(gè)元素,即點(diǎn)(1,2),N中表示兩個(gè)元素分別為1,2.所以表示相等的集合是②.故選B.11.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為_(kāi)_____.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4512.已知直線l的參數(shù)方程為x=12ty=22+32t(t為參數(shù)),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),Ox方向?yàn)闃O軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-π4)
(1)求直線l的傾斜角;
(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.答案:(1)直線參數(shù)方程可以化x=tcos60°y=22+tsin60°,根據(jù)直線參數(shù)方程的意義,這條經(jīng)過(guò)點(diǎn)(0,22),傾斜角為60°的直線.(2)l的直角坐標(biāo)方程為y=3x+22,ρ=2cos(θ-π4)的直角坐標(biāo)方程為(x-22)2+(y-22)2=1,所以圓心(22,22)到直線l的距離d=64,∴|AB|=102.13.4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.14.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場(chǎng)館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.15.
在△ABC中,點(diǎn)D在線段BC的延長(zhǎng)線上,且BC=3CD,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若AO=xAB+(1-x)AC,則x的取值范圍是()
A.
B.
C.
D.答案:D16.例3.設(shè)a>0,b>0,解關(guān)于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對(duì)于不等式ax-2≤-bx,即(a+b)x≤2
因?yàn)閍>0,b>0即:x≤2a+b.(2)對(duì)于不等式ax-2≥bx,即(a-b)x≥2①當(dāng)a>b>0時(shí),由①得x≥2a-b,∴此時(shí),原不等式解為:x≥2a-b或x≤2a+b;當(dāng)a=b>0時(shí),由①得x∈?,∴此時(shí),原不等式解為:x≤2a+b;當(dāng)0<a<b時(shí),由①得x≤2a-b,∴此時(shí),原不等式解為:x≤2a+b.綜上可得,當(dāng)a>b>0時(shí),原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當(dāng)0<a≤b時(shí),原不等式解集為(-∞,2a+b].17.拋擲兩個(gè)骰子,若至少有一個(gè)1點(diǎn)或一個(gè)6點(diǎn)出現(xiàn),就說(shuō)這次試驗(yàn)失?。敲矗?次試驗(yàn)中成功2次的概率為()
A.
B.
C.
D.答案:D18.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()
A.36個(gè)
B.42個(gè)
C.30個(gè)
D.35個(gè)答案:A19.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒(méi)有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫(xiě)成“x=1或x=-1”,故選B.20.在等腰直角三角形ABC中,若M是斜邊AB上的點(diǎn),則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當(dāng)點(diǎn)M位于線段AC內(nèi)時(shí),AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.21.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C22.圓錐曲線G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線是,過(guò)F作直線與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過(guò)焦點(diǎn)F的弦為AB,過(guò)A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時(shí)r<d,圓M與準(zhǔn)線相離;拋物線的離心率
e=1,此時(shí)r=d,圓M與準(zhǔn)線相切;雙曲線的離心率
e>1,此時(shí)r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.23.函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù))對(duì)任意實(shí)數(shù)x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A24.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571425.如圖程序運(yùn)行后輸出的結(jié)果為_(kāi)_____.答案:由題意,列出如下表格s
0
5
9
12
n
5
4
3
2當(dāng)n=12時(shí),不滿足“s<10”,則輸出n的值2故為:226.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為_(kāi)_____.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π627.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。28.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過(guò)點(diǎn)A(2,3),則過(guò)兩點(diǎn)P1(a1,b1),P2(a2,b2)的直線方程為_(kāi)_____.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點(diǎn),∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點(diǎn)P1(a1,b1),P2(a2,b2)的坐標(biāo)都適合方程2x+3y+1=0,∴兩點(diǎn)(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(diǎn)(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.29.若直線y=x+b與圓x2+y2=2相切,則b的值為
______.答案:由題意知,直線y=x+b與圓x2+y2=2相切,∴2=|b|2,解得b=±2.故為:±2.30.解下列關(guān)于x的不等式
(1)
(2)答案:(1)(2)原不等式的解集為解析:(1)
解:(2)
解:分析該題要設(shè)法去掉絕對(duì)值符號(hào),可由去分類(lèi)討論當(dāng)時(shí)原不等式等價(jià)于
故得不等式的解集為所以原不等式的解集為31.化簡(jiǎn)下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC32.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D33.設(shè)雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.
(I)求雙曲線C的離心率e的取值范圍:
(II)設(shè)直線l與y軸的交點(diǎn)為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個(gè)不同的點(diǎn),故知方程組x2a2-y2=1x+y=1.有兩個(gè)不同的實(shí)數(shù)解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設(shè)A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.34.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進(jìn)行檢驗(yàn),問(wèn):
(1)當(dāng)n=100,1000,10000時(shí),分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(jù)(1),談?wù)勀銓?duì)超幾何分布與二項(xiàng)分布關(guān)系的認(rèn)識(shí).答案:(1)當(dāng)n=100時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當(dāng)n=1000時(shí),如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項(xiàng)分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)驅(qū)動(dòng)的管理決策制定與實(shí)施考核試卷
- 焙烤食品制造的市場(chǎng)競(jìng)爭(zhēng)分析考核試卷
- 創(chuàng)業(yè)公司文化與員工心理健康考核試卷
- 2024年信息技術(shù)服務(wù)合同標(biāo)的及服務(wù)細(xì)節(jié)
- 中小學(xué)課后服務(wù)合作協(xié)議書(shū)
- 創(chuàng)新科技對(duì)安全文化的影響考核試卷
- vi 招標(biāo) 合同模板
- 東城大學(xué)食堂托管合同模板
- 叉車(chē)設(shè)備采購(gòu)合同模板
- 2024年凌柏離婚條件與財(cái)產(chǎn)分配
- 制漿車(chē)間操作規(guī)程(山東海韻公司)
- 格賓石籠施工技術(shù)交底
- 美麗鄉(xiāng)村監(jiān)理實(shí)施細(xì)則
- 小學(xué)漢語(yǔ)拼音聲韻母表鏤空版.doc
- 哮病(熱哮證)中醫(yī)臨床路徑臨床療效總結(jié)分析報(bào)告
- 高等學(xué)校學(xué)生食堂伙食結(jié)構(gòu)及成本核算指導(dǎo)意見(jiàn)
- 二年級(jí)數(shù)學(xué)德育滲透教學(xué)計(jì)劃
- 《逃離》愛(ài)麗絲·門(mén)羅
- 口腔診所規(guī)章制度-口腔診所18項(xiàng)規(guī)章制度
- 俄語(yǔ)建筑幕墻詞匯
- 露天采石場(chǎng)開(kāi)采方案
評(píng)論
0/150
提交評(píng)論