版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1-0StudyoftheBEM
邊界元法學(xué)習(xí)成員:高成路、郭焱旭、梅潔、李銘、金純、劉克奇、匡偉、高松、李崴1-1巖土工程的數(shù)值方法工程問(wèn)題數(shù)學(xué)模型偏微分方程的邊值問(wèn)題或初值問(wèn)題邊界積分方程問(wèn)題解析方法數(shù)值方法解析方法數(shù)值方法FDMFEMEFM其它BEM其它KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-2StudyoftheBEMKeywords1-3applicability適用性
stressanddeformationanalysis應(yīng)力和變形分析
integralstatement
功互等定理
kernels核函數(shù)quadraticelements二次單元
discretization離散化
approximation近似值shapefunctions形函數(shù)
intrinsiccoordinate本征坐標(biāo)Gaussianquadrature高斯正交
singularity奇異性,奇異點(diǎn)
CauchyPrincipalValue柯西主值.variationalformulation變分公式化,變分表述1-4numericalintegration數(shù)值積分
sparseandsymmetricmatrices稀疏對(duì)稱矩陣
fullypopulatedandasymmetricmatrices全充填非對(duì)稱矩陣Weightedresidualprinciple加權(quán)余量法
isoparametricelements等參單元undergroundexcavations地下開(kāi)挖
fracturingprocesses破裂過(guò)程
In-situstress原位應(yīng)力
permeabilitymeasurements滲透性觀測(cè)coupledthermo-mechanical熱力耦合materialheterogeneity材料各向異性Somigliana’sidentity索米利亞納恒等式hybridmodel混合模型Keywords1-5damageevolutionprocesses損傷演化過(guò)程
homogeneousandlinearlyelasticbodies.各向同性線彈性體sourcedensities原密度
fractureanalysis斷裂分析
fieldpoint場(chǎng)點(diǎn)globalstiffnessmatrices整體剛度矩陣
normalderivative法向?qū)?shù)
fracturepropagationproblems裂隙傳播問(wèn)題boreholestability鉆孔穩(wěn)定性
rockspalling巖石開(kāi)裂
stressintensityfactors(SIF)應(yīng)力強(qiáng)度因子
maximumtensilestrength最大抗拉強(qiáng)度microscopic微觀的Keywords1-6heatgradients熱力梯度
sharpcorners鈍化邊角
degreesoffreedom自由度
potentialfunction勢(shì)函數(shù)
meshlesstechnique無(wú)單元技術(shù)
movingleastsquares移動(dòng)最小二乘法simplificationoftheintegration積分簡(jiǎn)化
leastsquaremethod最小二乘法analyticalintegrationofdomainintegrals.積分域的解析解Fourierexpansionofintegrandfunctions.被積函數(shù)的傅里葉展開(kāi)higherorderfundamentalsolutions.高階基本解theDualReciprocityMethod(DRM).雙重互易法KeywordsKeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-7StudyoftheBEMBasicconcepts1-8UnliketheFEMandFDMmethods,theBEMapproachinitiallyseeksaweaksolutionatthegloballevelthroughanintegralstatement,basedonBetti’sreciprocaltheoremandSomigliana’sidentity.Foralinearelasticityproblemwithdomain?;boundaryΓofunitoutwardnormalvectorn?
,andconstantbodyforcef?,forexample,theintegralstatementiswrittenas
(8)ThesolutionoftheintegralEq.(8)requiresthefollowingsteps:1-9(1)DiscretizationoftheboundaryΓwithafinitenumberofboundaryelements.Basicconcepts
(9)1-10(2)Approximationofthesolutionoffunctionslocallyatboundaryelementsby(trial)shapefunctions,inasimilarwaytothatusedforFEM.Thedisplacementandtractionfunctionswithineachelementarethenexpressedasthesumoftheirnodalvaluesoftheelementnodes:Basicconcepts
(10)1-11SubstitutionofEqs.(10)into(9)andforEq.(8)canbewritteninmatrixformasBasicconcepts
(11)
(12)1-12(3)EvaluationoftheintegralsTij,UijandBiwithpointcollocationmethodbysettingthesourcepointPatallboundarynodessuccessively.(4)Incorporationofboundaryconditionsandsolution.IncorporationoftheboundaryconditionsintothematrixEq.(12)willleadtofinalmatrixequationBasicconcepts
(14)1-13(5)Evaluationofdisplacementsandstressesinsidethedomain.Forpracticalproblems,itisoftenthestressesanddisplacementsatsomepointsinsidethedomainofinterestthathavespecialsignificance.UnliketheFEMinwhichthedesireddataareautomaticallyproducedatallinteriorandboundarynodes,whethersomeofthemareneededornot,inBEMthedisplacementandstressvaluesatanyinteriorpoint,P,mustbeevaluatedseparatelybyBasicconcepts
(16)(15)KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-14StudyoftheBEM1-15ThedevelopmentofBEMIn1963,JaswonandSymmgavetheboundaryintegralequationmethodforsolvingpotentialproblems.In1967,RizzoandCrusegotthebreakthroughforstressanalysisinsolids.In1978,Crusestudiedforfracturemechanicsapplications,basedonBetti’sreciprocaltheorem(Betti,1872)andSomigliana’sidentityinelasticitytheory(Somigliana,1885).In1977,BrebbiaandDominguezwrittenthebasicequationsusingtheweightedresidualprinciple.Watson(1976)gavetheintroductionofisoparametricelementsusingdifferentordersofshapefunctionsinthesamefashionasthatinFEM,greatlyenhancedtheBEM’sapplicabilityforstressanalysisproblems.1-16CrouchandFairhurst(1973),BradyandBray(1978)takenmostnotableoriginaldevelopmentsofBEMapplicationinthefieldofrockmechanics.Intheearly80s,PanandMaier(1997),Elzein(2000)andGhassemistartedtoconcernBEMformulationsforcoupledthermo-mechanicalandhydro-mechanicalprocesses.KuriyamaandMizuta(1993),Kuriyama(1995)andCayolandCornet(1997)reported3-DapplicationsduetotheBEM’sadvantageinreducingmodeldimensions,,especiallyusingDDMforstressanddeformationanalysis.ThedevelopmentofBEMKeywordsaboutBEMCharacteradvantage/disadvantageApplicationandtransformation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-17StudyoftheBEM1-18advantageThemainadvantageoftheBEMisthereductionofthecomputationalmodeldimensionbyone,withmuchsimplermeshgenerationandthereforeinputdatapreparation,comparedwithfulldomaindiscretizationmethodssuchastheFEMandFDM.TheBEMisoftenmoreaccuratethantheFEMandFDM,duetoitsdirectintegralformulation.優(yōu)點(diǎn):降低求解問(wèn)題的維數(shù),3D問(wèn)題變?yōu)?D問(wèn)題,2D變?yōu)?D問(wèn)題.具有較高的精度,原因:僅僅對(duì)邊界進(jìn)行離散,域內(nèi)點(diǎn)的值采用邊界上的已知量計(jì)算得到.1-19disadvantagetheBEMisnotasefficientastheFEMindealingwithmaterialheterogeneity,becauseitcannothaveasmanysub-domainsaselementsintheFEM.TheBEMisalsonotasefficientastheFEMinsimulatingnon-linearmaterialbehaviour,suchasplasticityanddamageevolutionprocesses,becausedomainintegralsareoftenpresentedintheseproblems.KeywordsaboutBEMCharacteradvantage/disadvantageApplicationandalternativeformulation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-20StudyoftheBEM1-21ApplicationofBEM—FractureanalysiswithBEMToapplystandarddirectBEMforfractureanalysis,thefracturesmustbeassumedtohavetwooppositesurfaces,exceptattheapexofthefracturetipwherespecialsingulartipelementsmustbeused.DenoteΓcasthepathofthefracturesinthedomain?withitstwooppositesurfacesrepresentedbyΓc+andΓc-,respectively,Somigliana’sidentity(whenthefieldpointisontheboundary)canbewrittenas
(17)1-22TwonewtechniqueswereproposedforfractureanalysiswithBEM.ThefirstoneisDualBoundaryElementMethod(DBEM),whichwasfirstpresentedbyPortela(1992),andwasextendedto3-DcrackgrowthproblemsbyMiandAliabadi(1992,1994).Theessenceofthistechniqueistoapplydisplacementboundaryequationsatonesurfaceofafractureelementandtractionboundaryequationsatitsoppositesurface,althoughthetwoopposingsurfacesoccupypracticallythesamespaceinthemodel.Thegeneralmixedmodefractureanalysiscanbeperformednaturallyinasingledomain.DBEM—FractureanalysiswithBEM1-23ThesecondoneisDDM.TheDDMhasbeenwidelyappliedtosimulatefracturingprocessesinfracturemechanicsingeneralandinrockfracturepropagationproblemsinparticularduetotheadvantagethatthefracturescanberepresentedbysinglefractureelementswithoutneedforseparaterepresentationoftheirtwooppositesurfaces,asshouldbedoneinthedirectBEMsolutions.DDM—FractureanalysiswithBEM1-24ApplicationofBEM—FractureanalysiswithBEMButtherearestillgreatboundednessinanalyzingfracturingprocessesusingBEM,especiallyforrockmechanicsproblems.Ontheonehand,whathappensexactlyatthefracturetipsinrocksstillremainstobeadequatelyunderstood,Ontheotherhand,complexnumericalmanipulationsarestillneededforre-meshingfollowingthefracturegrowthprocesssothatthetipelementsareaddedtowherenewfracturetipsarepredicted.Duetotheabovedifficulties,fracturegrowthanalysesinrockmechanicshavenotbeenwidelyapplied.KeywordsaboutBEMCharacteradvantage/disadvantageAlternativeformulation
oftheBEMBasicconceptsDevelopmentoftheBEMBasicconceptsoftheBEM目錄1-25StudyoftheBEM1-26AlternativeformulationsassociatedwithBEMThestandardBEM,DBEMandDDMaspresentedabovehaveacommonfeature:thefinalcoefficientmatricesoftheequationsarefullypopulatedandasymmetric,duetothetraditionalnodalcollocationtechnique.Thismakesthestorageoftheglobalcoefficientmatrixandsolutionofthefinalequationsystemlessefficient,comparedwithFEM.Andthismethodneedsspecialtreatmentfortheproblemwithsharpcornersontheboundarysurfaces(curves)oratthefractureintersections,andartificialcornersmoothing,additionalnodesorspecialcornerelementsareusuallythetechniquesappliedtosolvethisparticulardifficulty.1-27GalerkinBoundaryElementMethodTheGBEMproducesasymmetriccoefficientmatrixbymultiplyingthetraditionalboundaryintegralbyaweightedtrailfunctionandintegratesitwithrespecttothesourcepointontheboundaryforasecondtime,inaGalerkinsenseofweightedresidualformulation.
(19)1-28TheGBEMisanattractiveapproachduetothesymmetryofitsfinalsystemequation,whichpavesthewayforthevariationalformulationofBEMforsolvingnon-linearproblems.GalerkinBoundaryElementMethod1-29BoundaryContourMethodTheBoundaryContourMethod(BCM)involvesrearrangingthestandardBEMintegralEq.(8)sothatthedifferenceofthetwointegralsappearingontheright-handsideofEq.(8)canberepresentedbyavectorfunctionFi=Uij*tj–tij*ujwhichisdivergencefree
(8)(22)1-30TheBCMapproachisattractivemainlybecauseofitsfurtherreductionofcomputationalmodeldimensionsandsimplificationoftheintegration.Thesavingsinpreprocessingofthesimulationsareclear.Treatmentoffracturesandmaterialnon-homogeneityhasnotbeenstudiedinBCM;thesemaylimititsapplicationstorockmechanicsproblemsconsideringthepresentstate-ofthe-art.BoundaryContourMethod1-31BoundaryNodeMethodThemethodisacombinationoftraditionalBEMwithameshlesstechniqueusingthemovingleastsquaresforestablishingtrialfunctionswithoutanexplicitmeshofboundaryelements.Itfurthersimplifiesthemeshgenerationtasks.Itsapplicationsconcentrateonshapesensitivityanalysisatpresentandsolutionofpotentialproblems,butcanbeextendedtogeneralgeom
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 競(jìng)聘鄉(xiāng)鎮(zhèn)長(zhǎng)崗位講話稿
- 黨員個(gè)人對(duì)照檢視總結(jié)
- 在市找活干簽合同范本(2篇)
- 工業(yè)園區(qū)消防栓施工合同
- 高檔住宅區(qū)建設(shè)合同模板
- 寵物公司租賃合同協(xié)議書(shū)
- 房產(chǎn)助理聘用合同樣本
- 鋁合金食品加工施工合同范本
- 制造業(yè)公司石材施工合同
- 農(nóng)業(yè)電氣化施工合同
- 安徽省淮北市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版期末考試((上下)學(xué)期)試卷及答案
- 注漿工安全技術(shù)措施
- 大學(xué)生職業(yè)生涯規(guī)劃
- 干燥綜合征的護(hù)理查房
- 江蘇省徐州市2023-2024學(xué)年六年級(jí)上學(xué)期期末科學(xué)試卷(含答案)2
- 五年級(jí)數(shù)學(xué)上冊(cè)七大重點(diǎn)類型應(yīng)用題
- 2023上海高考英語(yǔ)詞匯手冊(cè)單詞背誦默寫(xiě)表格(復(fù)習(xí)必背)
- 1離子反應(yīng)課件2024-2025學(xué)年人教版高一化學(xué)
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語(yǔ)五年級(jí)上冊(cè)
- 人民軍隊(duì)歷史與優(yōu)良傳統(tǒng)(2024)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 富血小板血漿(PRP)臨床實(shí)踐與病例分享課件
評(píng)論
0/150
提交評(píng)論