版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年湘中幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為02.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)3.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)4.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C5.某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.6.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C7.小王通過英語聽力測試的概率是,他連續(xù)測試3次,那么其中恰有1次獲得通過的概率是()
A.
B.
C.
D.答案:A8.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.9.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選
C.10.從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個,根據(jù)古典概型概率公式得到P=820=25,故選B.11.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點,設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.12.寫出求1+2+3+4+5+6+…+100的一個算法.可運用公式1+2+3+…+n=n(n+1)2直接計算.
第一步______;
第二步______;
第三步
輸出計算的結(jié)果.答案:由條件知構(gòu)成等差數(shù)列,從而前n項和公式求得其值,求1+2+3+4+5+6+…+100,故先取n=100,再代入計算S=n(n+1)2.故為:取n=100;計算S=n(n+1)2.13.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(
)
A.0
B.2
C.
D.3答案:B14.實數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個方格中的內(nèi)容分別為()
A.有理數(shù)、零、整數(shù)
B.有理數(shù)、整數(shù)、零
C.零、有理數(shù)、整數(shù)
D.整數(shù)、有理數(shù)、零
答案:B15.為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集以下數(shù)據(jù)______.答案:為了調(diào)查高中生的性別與是否喜歡足球之間有無關(guān)系,一般需要收集男女生中喜歡或不喜歡足球的人數(shù),再得出2×2列聯(lián)表,最后代入隨機變量的觀測值公式,得出結(jié)果.故為:男女生中喜歡或不喜歡足球的人數(shù).16.直線y=1與直線y=3x+3的夾角為______答案:l1與l2表示的圖象為(如下圖所示)y=1與x軸平行,y=3x+3與x軸傾斜角為60°,所以y=1與y=3x+3的夾角為60°.故為60°17.若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于______.答案:由x2-4x-5<0,x∈Z,解得:-1<x<5,x∈Z,∴x=0,1,2,3,4.即A={0,1,2,3,4},B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},∴A∩B={1,2,3,4},而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,∴P=46=23,故為:23.18.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時,tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.19.某同學(xué)參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設(shè)這位同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學(xué)得300分的概率為
;這名同學(xué)至少得300分的概率為
.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。20.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.21.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個式中正確的是()
A.①②
B.②③
C.①④
D.②④答案:C22.口袋中裝有三個編號分別為1,2,3的小球,現(xiàn)從袋中隨機取球,每次取一個球,確定編號后放回,連續(xù)取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時,出現(xiàn)3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.23.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進(jìn)行分析,抽取了總成績介于350分到650分之間的10000名學(xué)生成績,并根據(jù)這10000名學(xué)生的總成績畫了樣本的頻率分布直方圖.為了進(jìn)一步分析學(xué)生的總成績與各科成績等方面的關(guān)系,要從這10000名學(xué)生中,再用分層抽樣方法抽出200人作進(jìn)一步調(diào)查,則總成績在[400,500)內(nèi)共抽出()
A.100人
B.90人
C.65人
D.50人
答案:B24.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C25.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()
A.內(nèi)切
B.相交
C.外切
D.相離答案:B26.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.27.整數(shù)630的正約數(shù)(包括1和630)共有______個.答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個.故為:24.28.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個數(shù)為()
A.1個
B.2個
C.3個
D.4個答案:C29.命題“每一個素數(shù)都是奇數(shù)”的否定是______.答案:原命題“每一個素數(shù)都是奇數(shù)”是一個全稱命題它的否定是一個特稱命題,即“有的素數(shù)不是奇數(shù)”故為:有的素數(shù)不是奇數(shù)30.設(shè)A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()
A.0
B.6
C.0或6
D.0或-6答案:C31.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當(dāng)n=1時,不等式左端=1,右端=2,所以不等式成立;(2)假設(shè)n=k(k≥1)時,不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當(dāng)n=k+1時,不等式也成立.綜合(1)、(2)得:當(dāng)n∈N*時,都有1+12+13+…+1n<2n.證法二:設(shè)f(n)=2n-(1+12+13+…+1n),那么對任意k∈N*
都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對任意n∈N*
都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.32.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠(yuǎn)地點離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.33.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1234.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22
(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)有()A.0個B.1個C.2個D.3個答案:①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進(jìn)入夏季的地區(qū)有甲、乙、丙三地.故選D.35.已知雙曲線的兩條準(zhǔn)線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.36.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項為C25(x2)2=10×x24=52x2,故選項為為C.37.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A38.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C39.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是
(
)
A.
B.
C.
D.答案:A40.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B41.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(
)
A.
B.
C.3
D.2答案:C42.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A43.A、B為球面上相異兩點,則通過A、B兩點可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點為球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的無數(shù)個大圓如果A,B兩點不是球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的一個大圓故選:D44.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是()
A.一條直線
B.兩條直線
C.圓
D.橢圓答案:C45.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.46.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A47.
若向量,滿足||=||=2,與的夾角為60°,則|+|=()
A.
B.2
C.4
D.12答案:B48.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(
)。答案:34℃或45℃49.求原點至3x+4y+1=0的距離?答案:由原點坐標(biāo)為(0,0),得到原點到已知直線的距離d=|3?0+4?0+1|32+42=15.50.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點,n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項,2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)第2卷一.綜合題(共50題)1.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
A.若k2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病
B.從獨立性檢驗可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時,我們說某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤
D.以上三種說法都不正確答案:D2.用隨機數(shù)表法進(jìn)行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數(shù)表法進(jìn)行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.3.某醫(yī)院計劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.
(I)設(shè)所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(II)現(xiàn)從10名醫(yī)生中的張強、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長,在張強被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)4.如圖,平面內(nèi)有三個向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.5.設(shè)向量與的夾角為θ,,,則cosθ等于()
A.
B.
C.
D.答案:D6.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求實數(shù)k的取值范圍.答案:令f(x)=x2-(k2-9)x+k2-5k+6,則∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0
且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.7.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標(biāo)為()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B8.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()
A.2
B.
C.
D.
答案:D9.教學(xué)大樓共有五層,每層均有兩個樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D10.圓x2+y2-4x=0,在點P(1,)處的切線方程為()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D11.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個為0C.a(chǎn)和b至少有一個不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價條件是a≠0或b≠0,即兩者中至少有一個不為0,對照四個選項,只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個為0包括了兩個數(shù)都是0,故不對;D中只是兩個數(shù)僅有一個為0,概括不全面,故不對;故選C12.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.13.如果命題P:?∈{?},命題Q:??{?},那么下列結(jié)論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.14.過點A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點時,方程為y=4x,符合題意;當(dāng)直線不過原點時,設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.15.如果命題“曲線C上的點的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應(yīng)的點都在曲線C上
C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C16.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(
)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)17.直線4x-3y+5=0與直線8x-6y+5=0的距離為______.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是
|10-5|62+82=12,故為:12.18.如圖是從甲、乙兩個班級各隨機選出9名同學(xué)進(jìn)行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.19.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C20.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()
A.a(chǎn)<b<c<d
B.a(chǎn)<b<d<c
C.b<a<d<c
D.b<a<c<d
答案:C21.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標(biāo)為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標(biāo)為(2,π4).故為:(2,π4).22.已知F1、F2為橢圓x225+y29=1的兩個焦點,過F1的直線交橢圓于A、B兩點.若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:823.將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下:0001,0002,0003,…,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個部分.如果第一部分編號為0001,0002,…,0020,從中隨機抽取一個號碼為0015,則第40個號碼為______.答案:∵系統(tǒng)抽樣是先將總體按樣本容量分成k=Nn段,再間隔k取一個.又∵現(xiàn)在總體的個體數(shù)為1000,樣本容量為50,∴k=20∴若第一個號碼為0015,則第40個號碼為0015+20×39=0795故為079524.春天到了,曲曲折折的荷塘上面,彌望的是田田的葉子,已知每一天荷葉覆蓋水面的面積是前一天的2倍,若荷葉20天可以完全長滿池塘水面,當(dāng)荷葉剛好覆蓋水面面積的一半時,荷葉已生長了()A.10天B.15天C.19天D.20天答案:設(shè)荷葉覆蓋水面的初始面積為a,則x天后荷葉覆蓋水面的面積y=a?2x(x∈N+),根據(jù)題意,令2(a?2x)=a?220,解得x=19,故選C.25.用反證法證明“a+b=1”時的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C26.直線y=2x+1的參數(shù)方程是()
A.(t為參數(shù))
B.(t為參數(shù))
C.(t為參數(shù))
D.(θ為參數(shù))
答案:B27.用反證法證明命題“如果a>b,那么a3>b3“時,下列假設(shè)正確的是()
A.a(chǎn)3<b3
B.a(chǎn)3<b3或a3=b3
C.a(chǎn)3<b3且a3=b3
D.a(chǎn)3>b3答案:B28.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點,P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.29.紙制的正方體的六個面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()
A.南
B.北
C.西
D.下
答案:B30.設(shè)a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時,函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點時,a=22,故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).31.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點.其他非0的零點關(guān)于原點對稱.∴x1+x2+…+x2011=0.故為:0.32.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()
A.總工程師和專家辦公室
B.開發(fā)部
C.總工程師、專家辦公室和開發(fā)部
D.總工程師、專家辦公室和所有七個部答案:C33.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.34.設(shè)有三個命題:“①0<12<1.②函數(shù)f(x)=log
12x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log
12x是減函數(shù).其“小前提”是①.故為:①.35.設(shè)直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B36.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.37.有一批機器,編號為1,2,3,…,112,為調(diào)查機器的質(zhì)量問題,打算抽取10臺,問此樣本若采用簡單的隨機抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號001,002,112…用抽簽法做112個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進(jìn)行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取10次,就得到一個容量為10的樣本.38.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因為這兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QP∥BC,交AC于點P.過點B作BM⊥PQ,垂足為M;再過點F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c239.下列哪組中的兩個函數(shù)是同一函數(shù)()A.y=(x)2與y=xB.y=(3x)3與y=xC.y=x2與y=(x)2D.y=3x3與y=x2x答案:A、y=x與y=x2的定義域不同,故不是同一函數(shù).B、y=(3x)3=x與y=x的對應(yīng)關(guān)系相同,定義域為R,故是同一函數(shù).C、fy=x2與y=(x)2的定義域不同,故不是同一函數(shù).D、y=3x3與y=x2x
具的定義域不同,故不是同一函數(shù).故選B.40.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.41.用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個能被3整除”時,假設(shè)應(yīng)為()
A.b都能被3整除
B.b都不能被3整除
C.b不都能被3整除
D.a(chǎn)不能被3整除答案:B42.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.43.拋物線y=ax2(其中a>0)的焦點坐標(biāo)是(
)
A.(,0)
B.(0,)
C.(,0)
D.(0,)答案:D44.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°45.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。46.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).
(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);
(Ⅱ)估計被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計被調(diào)查者月收入的平均數(shù)為240047.若直線
3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()
A.-1
B.1
C.3
D.-3答案:B48.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()
A.都是兩個點
B.一條直線和一個圓
C.前者為兩個點,后者是一條直線和一個圓
D.前者是一條直線和一個圓,后者是兩個圓答案:D49.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點,已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點的距離為458cm.50.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠(yuǎn)地點離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.第3卷一.綜合題(共50題)1.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,∴當(dāng)接收方收到密文14,9,23,28時,則a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文為6,4,1,7故選C.2.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.3.從某校隨機抽取了100名學(xué)生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學(xué)生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;504.已知P為拋物線y2=4x上一點,設(shè)P到準(zhǔn)線的距離為d1,P到點A(1,4)的距離為d2,則d1+d2的最小值為______.答案:∵y2=4x,焦點坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點共線時,d1+d2的最小值=|AF|=4故為45.若隨機變量ξ~N(2,9),則隨機變量ξ的數(shù)學(xué)期望c=()
A.4
B.3
C.2
D.1答案:C6.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:227.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.8.在極坐標(biāo)系中,點(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D9.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.10.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(
)
A.
B.
C.
D.
答案:C11.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C12.在直角坐標(biāo)系xoy
中,已知曲線C1:x=t+1y=1-2t(t為參數(shù))與曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0
)
有一個公共點在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數(shù))化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數(shù),a>0
)化為普通方程:x2a2+y29=1∵兩曲線有一個公共點在x軸上,∴94a2=1∴a=32故為:3213.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B14.若回歸直線方程中的回歸系數(shù)b=0時,則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計算公式中,與相關(guān)指數(shù)的計算公式中,它們的分子相同,故為:0.15.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時,第一步應(yīng)驗證()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C16.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A17.用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是()
A.a(chǎn)、b至少有一個不為0
B.a(chǎn)、b至少有一個為0
C.a(chǎn)、b全不為0
D.a(chǎn)、b中只有一個為0答案:A18.某重點高中高二歷史會考前,進(jìn)行了五次歷史會考模擬考試,某同學(xué)在這五次考試中成績?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B19.表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個隨機事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.20.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.21.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(
)
答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.22.已知橢圓的焦點為F1,F(xiàn)2,A在橢圓上,B在F1A的延長線上,且|AB|=|AF2|,則B點的軌跡形狀為()
A.橢圓
B.雙曲線
C.圓
D.兩條平行線答案:C23.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個單位,同時向y軸正方向平移個單位.B.向x軸負(fù)方向平移個單位,同時向y軸正方向平移個單位.C.向x軸負(fù)方向平移個單位,同時向y軸負(fù)方向平移個單位.D.向x軸正方向平移個單位,同時向y軸負(fù)方向平移個單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.24.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.25.已知a=4,b=1,焦點在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C26.對于實數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.27.(1+x2)5的展開式中x2的系數(shù)()A.10B.5C.52D.1答案:含x2項為C25(x2)2=10×x24=52x2,故選項為為C.28.下列說法中正確的有()
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個極端值的影響,平均數(shù)受樣本中的每一個數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.正確向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.29.對于平面幾何中的命題:“夾在兩條平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時,我們常用由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線這間的平行線段相等”,我們可以推斷在立體幾何中:“夾在兩個平行平面間的平行線段相等”這個命題是一個真命題.故為:“夾在兩個平行平面間的平行線段相等”.30.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當(dāng)M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1431.從一批羽毛球產(chǎn)品中任取一個,質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B32.若向量{}是空間的一個基底,則一定可以與向量構(gòu)成空間的另一個基底的向量是()
A.
B.
C.
D.答案:C33.已知焦點在x軸上的雙曲線漸近線方程是y=±4x,則該雙曲線的離心率是()
A.
B.
C.
D.答案:A34.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()
A.14
B.7
C.15
D.不能確定答案:A35.圓x2+y2=1上的點到直線x=2的距離的最大值是
______.答案:根據(jù)題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:336.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水利工程爆破物品儲存規(guī)定
- 2024學(xué)校校園綠化養(yǎng)護(hù)服務(wù)合同
- 地鐵電力施工承包合同
- 2024年廣告投放與授權(quán)合同
- 生物質(zhì)能源項目招投標(biāo)授權(quán)
- 工業(yè)園區(qū)寬帶施工協(xié)議
- 2024互聯(lián)網(wǎng)金融服務(wù)平臺運營合同-創(chuàng)新金融服務(wù)
- 教育培訓(xùn)機構(gòu)會議費管理策略
- 智慧城市公共服務(wù)平臺協(xié)議
- 導(dǎo)演家庭保姆招聘協(xié)議
- 【圖文】污水源熱泵空調(diào)原理
- 雙梁橋式起重機變頻改造方案
- 胸痹中醫(yī)臨床路徑和診療方案
- 歐盟鐵路機車車輛互聯(lián)互通技術(shù)規(guī)范_TSI_CE認(rèn)證解析
- 小學(xué)生安全用電知識(課堂PPT)
- 裝飾自己的名字說課稿
- 人教版(PEP)四年級上冊英語unit 1 My classroom圖文完美版(課堂PPT)
- 幼小銜接中存在的問題及對策
- 中級漢語期末考試測試題(共5頁)
- 《國家電網(wǎng)公司安全生產(chǎn)事故隱患排查治理管理辦法》(國家電網(wǎng)安監(jiān)[
- 水保監(jiān)理報告范文
評論
0/150
提交評論