版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年林州建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請在給出的坐標系中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y=
bx+
a;
(3)估計使用年限為10年時,維修費用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應(yīng)的點的坐標,寫出點的坐標,在坐標系描出點,得到散點圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當x=10時,y=1.23×10+0.08=12.38,所以估計當使用10年時,維修費用約為12.38萬元.2.寫出系數(shù)矩陣為1221,且解為xy=11的一個線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.3.已知M(-2,7)、N(10,-2),點P是線段MN上的點,且PN=-2PM,則P點的坐標為______.答案:設(shè)P(x,y),則PN=(10-x,-2-y),PM=(-2-x,7-y),∵PN=-2PM,∴10-x=-2(-2-x)-2-y=-2(7-y),∴x=2y=4∴P點的坐標為(2,4).故為:(2,4)4.某品牌平板電腦的采購商指導(dǎo)價為每臺2000元,若一次采購數(shù)量達到一定量,還可享受折扣.如圖為某位采購商根據(jù)折扣情況設(shè)計的算法程序框圖,若一次采購85臺該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.5.拋物線y=4x2的焦點坐標是______.答案:由題意可知x2=14y∴p=18∴焦點坐標為(0,116)故為(0,116)6.設(shè)O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()
A.
B.
C.
D.答案:B7.命題“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.對任意x∈Z使x2+2x+m≤0
D.對任意x∈Z使x2+2x+m>0答案:D8.某公司為慶祝元旦舉辦了一個抽獎活動,現(xiàn)場準備的抽獎箱里放置了分別標有數(shù)字1000、800﹑600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數(shù)字等額的獎金(元),并規(guī)定摸到標有數(shù)字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標有數(shù)字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎金數(shù),由于參與者摸取的球上標有數(shù)字1000,800,600,0,當摸到球上標有數(shù)字0時,可以再摸一次,但獎金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.9.不等式|x-500|≤5的解集是______.答案:因為不等式|x-500|≤5,由絕對值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.10.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點的個數(shù)為()
A.1
B.2
C.3
D.4答案:B11.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.12.若直線3x+4y+m=0與曲線x=1+cosθy=-2+sinθ(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
______.答案:∵曲線x=1+cosθy=-2+sinθ(θ為參數(shù))的普通方程是(x-1)2+(y+2)2=1則圓心(1,-2)到直線3x+4y+m=0的距離d=|3?1+4(-2)+m|32+42=|m-5|5,令|m-5|5>1,得m>10或m<0.故為:m>10或m<0.13.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1414.設(shè)A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()
A.0
B.6
C.0或6
D.0或-6答案:C15.若直線的參數(shù)方程為,則直線的斜率為(
)A.B.C.D.答案:D16.在調(diào)試某設(shè)備的線路設(shè)計中,要選一個電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(
).答案:3.5kΩ17.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48018.若有以下說法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當且僅當a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A19.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D20.過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.21.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于
A.
B.
C.
D.答案:D22.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點B的坐標為(1,2),求點A和點C的坐標.答案:點A為y=0與x-2y+1=0兩直線的交點,∴點A的坐標為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點A和點C的坐標分別為(-1,0)和(5,-6)23.如圖,四邊形ABCD內(nèi)接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點P的⊙O的切線長是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.24.設(shè)O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同終點的向量
C.相等向量
D.模相等的向量答案:D25.已知P(B|A)=,P(A)=,則P(AB)=()
A.
B.
C.
D.答案:D26.位于直角坐標原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()
A.
B.
C.
D.答案:D27.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當?shù)淖鴺讼?,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)28.(選做題)已知矩陣.122x.的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.答案:矩陣M的特征多項式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因為λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對應(yīng)的一個特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個特征值為-1,對應(yīng)的一個特征向量為α=1-1…(10分)29.曲線的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()
A.(x-1)2(y-1)=1
B.
C.
D.答案:B30.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.31.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點P(m,2)在曲線C上,則m=______.答案:因為曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點P(m,2)在曲線C上,所以m=4×4=16.故為:16.32.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿足條件的函數(shù)f(x)有()
A.6個
B.10個
C.12個
D.16個答案:C33.已知橢圓中心在原點,一個焦點為(3,0),且長軸長是短軸長的2倍,則該橢圓的標準方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.34.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當x≥5時,x-5+x+3≥10,∴x≥6;當x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標為(-1,0),∴其極坐標是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.35.已知平面直角坐標系內(nèi)三點O(0,0),A(1,1),B(4,2)
(Ⅰ)求過O,A,B三點的圓的方程,并指出圓心坐標與圓的半徑.
(Ⅱ)求過點C(-1,0)與條件(Ⅰ)的圓相切的直線方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線段OA中點坐標為(12,12),線段OB的中點坐標為(2,1),kOA=1,kOB=12,∴線段OA垂直平分線的方程為y-12=-(x-12),線段OB垂直平分線的方程為y-1=12(x-2),聯(lián)立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當切線方程斜率不存在時,直線x=-1滿足題意;當斜率存在時,設(shè)為k,切線方程為y=k(x+1),即kx-y+k=0,∴圓心到切線的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時切線方程為y=815(x+1),綜上,所求切線方程為x=-1或y=815(x+1).36.已知空間向量a=(1,2,3),點A(0,1,0),若AB=-2a,則點B的坐標是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因為AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.37.已知在一場比賽中,甲運動員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進行一場比賽,則甲取得一勝一負的概率是______.答案:根據(jù)題意,甲取得一勝一負包含兩種情況,甲勝乙負丙,概率為:0.8×0.3=0.24;甲勝丙負乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負的概率為0.24+0.14=0.38故為0.3838.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.39.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選
C.40.在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下:
90
89
90
95
93
94
93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B41.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C42.下面程序運行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C43.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341344.方程4x-3×2x+2=0的根的個數(shù)是(
)
A.0
B.1
C.2
D.3答案:C45.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或13246.已知
p:所有國產(chǎn)手機都有陷阱消費,則¬p是()
A.所有國產(chǎn)手機都沒有陷阱消費
B.有一部國產(chǎn)手機有陷阱消費
C.有一部國產(chǎn)手機沒有陷阱消費
D.國外產(chǎn)手機沒有陷阱消費答案:C47.過點A(3,5)作圓C:(x-2)2+(y-3)2=1的切線,則切線的方程為______.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y-3k+5=0,由點到直線的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線方程為:3x+4y-29=0;當切線的斜率不存在時,直線為:x=3,滿足圓心(2,3)到直線x=3的距離為圓的半徑1,x=3也是切線方程;故為:3x+4y-29=0或x=3.48.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-249.已知A(-1,2),B(2,-2),則直線AB的斜率是()
A.
B.
C.
D.答案:A50.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.第2卷一.綜合題(共50題)1.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(
)
A.
B.
C.3
D.2答案:C2.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.3.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.4.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()
A.5
B.6
C.7
D.8答案:C5.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量
(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量
(單位:千瓦時)低谷電價(單位:
元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.6.復(fù)數(shù)z=(2+i)(1+i)在復(fù)平面上對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復(fù)數(shù)對應(yīng)點的坐標為(1,3),所以位于第一象限.故選A.7.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進行檢測,這種抽樣方法是()
A.簡單隨機抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B8.三段論:“①船準時啟航就能準時到達目的港,②這艘船準時到達了目的港,③這艘船是準時啟航的”中,“小前提”是______.(填序號)答案:三段論:“①船準時啟航就能準時到達目的港;②這艘船準時到達了目的港,③這艘船是準時啟航的,我們易得大前提是①,小前提是②,結(jié)論是③,故為:②.9.已知平面直角坐標系內(nèi)三點O(0,0),A(1,1),B(4,2)
(Ⅰ)求過O,A,B三點的圓的方程,并指出圓心坐標與圓的半徑.
(Ⅱ)求過點C(-1,0)與條件(Ⅰ)的圓相切的直線方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線段OA中點坐標為(12,12),線段OB的中點坐標為(2,1),kOA=1,kOB=12,∴線段OA垂直平分線的方程為y-12=-(x-12),線段OB垂直平分線的方程為y-1=12(x-2),聯(lián)立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當切線方程斜率不存在時,直線x=-1滿足題意;當斜率存在時,設(shè)為k,切線方程為y=k(x+1),即kx-y+k=0,∴圓心到切線的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時切線方程為y=815(x+1),綜上,所求切線方程為x=-1或y=815(x+1).10.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為11.一個箱中原來裝有大小相同的
5
個球,其中
3
個紅球,2
個白球.規(guī)定:進行一次操
作是指“從箱中隨機取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補一個紅球放到箱中.”
(1)求進行第二次操作后,箱中紅球個數(shù)為
4
的概率;
(2)求進行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進行第二次操作后,箱中紅球個數(shù)為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進行第二次操作后,箱中紅球個數(shù)X的分布列為:進行第二次操作后,箱中紅球個數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.12.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C13.若隨機向一個半徑為1的圓內(nèi)丟一粒豆子(假設(shè)該豆子一定落在圓內(nèi)),則豆子落在此圓內(nèi)接正三角形內(nèi)的概率是______.答案:∵圓O是半徑為R=1,圓O的面積為πR2=π則圓內(nèi)接正三角形的邊長為3,而正三角形ABC的面積為343,∴豆子落在正三角形ABC內(nèi)的概率P=334π=334π故為:334π14.設(shè)四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C15.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分數(shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分數(shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分數(shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D16.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線
y=x-2交于D、E兩點,求線段DE的中點坐標及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線
y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設(shè)D、E兩點的坐標分別為(x1,y1
)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標為M(-2,4),DE=1+1?|x1-x2|=2?(x1
+x2)2-4x1
?x2
=216-4(-6)=45.17.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.18.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D19.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2220.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認為正確的是______.
①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤21.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實數(shù))的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.22.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分數(shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(
)。答案:34℃或45℃23.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A24.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B25.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設(shè)正方體的棱長為a,不妨設(shè)a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.26.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()
A.
B.
C.
D.答案:D27.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.28.已知動點P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動點P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動點P(x,y)到兩定點(-2,0),(2,0)的距離之差等于2,由雙曲線定義知動點P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).29.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.30.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.31.把函數(shù)y=sin(x-)-2的圖象經(jīng)過按平移得到y(tǒng)=sinx的圖象,則=(
)
A.
B.
C.
D.答案:A32.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠成立故選D.33.在某項體育比賽中,七位裁判為一選手打出分數(shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數(shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.34.甲、乙兩人對一批圓形零件毛坯進行成品加工.根據(jù)需求,成品的直徑標準為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機抽取5件,測得直徑(單位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計誰加工的零件較好?
(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時間A有7種.故P(A)=710.35.點B是點A(1,2,3)在坐標平面yOz內(nèi)的正投影,則|OB|等于()
A.
B.
C.
D.答案:B36.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.37.設(shè)點P(t2+2t,1)(t>0),則|OP|(O為坐標原點)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當t=2時取得等號.故選D.38.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.39.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()
A.
B.
C.±
D.±答案:C40.將4封不同的信隨機地投入到3個信箱里,記有信的信箱個數(shù)為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是41.方程cos2x=x的實根的個數(shù)為
______個.答案:cos2x=x的實根即函數(shù)y=cos2x與y=x的圖象交點的橫坐標,故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).如圖在同一坐標系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應(yīng)該填
1.42.已知三點A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點,則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:343.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.44.在平行四邊形ABCD中,對角線AC與BD交于點O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對角線AC與BD交于點O,∴AB+AD=AC,又O為AC的中點,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.45.如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進制數(shù)11111(2)化為十進制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.46.若向量兩兩所成的角相等,且,則等于()
A.2
B.5
C.2或5
D.或答案:C47.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(
)塊肥皂。
A.5
B.2
C.3
D.4答案:D48.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點,故為:平行投影的投影線互相平行,而中心投影的投影線交于一點49.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.3個
B.4個
C.6個
D.8個答案:C50.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C第3卷一.綜合題(共50題)1.下列說法正確的是()
A.向量
與向量是共線向量,則A、B、C、D必在同一直線上
B.向量與平行,則與的方向相同或相反
C.向量的長度與向量的長度相等
D.單位向量都相等答案:C2.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)3.已知|OA|=1,|OB|=3,OA?OB=0,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12
|OC
|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:34.如圖,F(xiàn)是定直線l外的一個定點,C是l上的動點,有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.
(Ⅰ)建立適當?shù)淖鴺讼担蟪鲈搾佄锞€的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點為原點,KF所在直線為x軸建立平面直角坐標系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點為M,P、Q、M在拋物線準線l上的射影分別為A、B、D,∵PQ是拋物線過焦點F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點F的直線與橢圓交于P、Q兩點,則以PQ為直徑的圓與橢圓相應(yīng)的準線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點F的直線與雙曲線交于P、Q兩點,則以PQ為直徑的圓與雙曲線相應(yīng)的準線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準線l相交.5.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個容量為100的樣本,其頻率分布表(不完整)如下:
分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)據(jù)上述圖表,估計產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.6.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立7.在線性回歸模型y=bx+a+e中,下列說法正確的是()A.y=bx+a+e是一次函數(shù)B.因變量y是由自變量x唯一確定的C.隨機誤差e是由于計算不準確造成的,可以通過精確計算避免隨機誤差e的產(chǎn)生D.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會導(dǎo)致隨機誤差e的產(chǎn)生答案:線性回歸是利用數(shù)理統(tǒng)計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計分析方法之一,分析按照自變量和因變量之間的關(guān)系類型,可分為線性回歸分析和非線性回歸分析.A不正確,根據(jù)線性回歸方程做出的y的值是一個預(yù)報值,不是由x唯一確定,故B不正確,隨機誤差不是由于計算不準造成的,故C不正確,y除了受自變量x的影響之外還受其他因素的影響,故D正確,故選D.8.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.9.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.10.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()
A.5-
B.5+
C
D.10答案:B11.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.12.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:613.一個算法的流程圖如圖所示,則輸出S的值為
.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.14.如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,∠ACB的平分線分別交AE、AB于點F、D.
(Ⅰ)求∠ADF的度數(shù);
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=3315.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.16.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()
A.內(nèi)切
B.相交
C.外切
D.外離答案:B17.如圖,從圓O外一點P引兩條直線分別交圓O于點A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3518.曲線xy=1的參數(shù)方程不可能是()
A.
B.
C.
D.答案:B19.如圖所示,已知P是平行四邊形ABCD所在平面外一點,連結(jié)PA、PB、PC、PD,點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點共面答案:證明:分別延長P、PF、PG、PH交對邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點,順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵MNQR為平行四邊形,∴由共面向量定理得E、F、G、H四點共面.20.教材中“坐標平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過建立直角坐標系,用代數(shù)中的函數(shù)思想來解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.21.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為
______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.22.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點.用AB、AD、AA1表示向量MN,則MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.23.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A24.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.25.參數(shù)方程(θ為參數(shù))化為普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D26.已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設(shè)2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.27.命題“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.對任意的x∈R,2x≤0
D.對任意的x∈R,2x>0答案:D28.已知拋物線的頂點在坐標原點,焦點在x軸正半軸,拋物線上一點M(3,m)到焦點的距離為5,求m的值及拋物線方程.答案:∵拋物線頂點在原點,焦點在x軸上,其上一點M(3,m)∴設(shè)拋物線方程為y2=2px∵其上一點M(3,m)到焦點的距離為5,∴3+p2=5,可得p=4∴拋物線方程為y2=8x.29.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D30.按ABO血型系統(tǒng)學(xué)說,每個人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當且僅當父母中至少有一人的血型是AB型時,子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D31.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.32.已知橢圓(a>b>0)的焦點分別為F1,F(xiàn)2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門店過戶合同
- 金融街二手房交易居間合同范本
- 煙草企業(yè)應(yīng)屆生勞動合同模板
- 體育用品辦公室租賃合同
- 庭院植物種植施工合同
- 購物中心擴建工程聘用協(xié)議
- 森林資源保護護林員勞動合同
- 邯鄲市物業(yè)員工培訓(xùn)與考核辦法
- 轉(zhuǎn)讓科技成果合同范本(2篇)
- 公路橋梁合同審核注意哪些問題
- 工藝參數(shù)的調(diào)整與優(yōu)化
- 小學(xué)數(shù)學(xué)與科學(xué)融合跨學(xué)科教學(xué)案例
- 天堂-講解課件
- Zippo哈雷戴森1996-2021年原版年冊(共26冊)
- 遼寧省醫(yī)療糾紛預(yù)防與處理辦法
- 2023年河南省高中學(xué)業(yè)水平考試政治試卷真題(含答案詳解)
- SEER數(shù)據(jù)庫的申請及數(shù)據(jù)提取方法與流程
- 湖北省新中考語文現(xiàn)代文閱讀技巧講解與備考
- 幼兒園故事課件:《胸有成竹》
- (完整版)康復(fù)科管理制度
- 深度千分尺校準記錄表
評論
0/150
提交評論