版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年貴陽護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:102.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是
______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.3.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C4.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時(shí),即A郵箱的信件數(shù)為0,由分步計(jì)數(shù)原理知兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時(shí)的概率,同理可得ξ=1時(shí),ξ=2時(shí),ξ=3時(shí)的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.5.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得6.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.7.在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施化肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).
(1)畫出散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請(qǐng)預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點(diǎn)圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計(jì)算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時(shí),水稻的產(chǎn)量是438kg.8.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,則x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a?b=x+2+0=0,x=-2.故為:-2.9.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.10.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為411.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()
A.
B.
C.±
D.±答案:C12.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}13.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.14.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()
A.
B.
C.
D.2答案:C15.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()
A.2
B.3
C.4
D.5答案:C16.方程.12
41x
x21-3
9.=0的解集為______.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.17.過點(diǎn)(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(diǎn)(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.18.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C19.集合{1,2,3}的真子集的個(gè)數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選C.20.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長.答案:直線的參數(shù)方程為
x
=
-3
+
32sy
=
12s
(s
為參數(shù)),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數(shù)方程代入上式,得
s2-63s+
10
=
0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.21.證明:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線的方程為,直線的方程為.設(shè)底邊上任意一點(diǎn)為,則到的距離;到的距離;到的距離.因?yàn)?,所以,結(jié)論成立.22.命題“存在x∈Z使x2+2x+m≤0”的否定是()
A.存在x∈Z使x2+2x+m>0
B.不存在x∈Z使x2+2x+m>0
C.對(duì)任意x∈Z使x2+2x+m≤0
D.對(duì)任意x∈Z使x2+2x+m>0答案:D23.2008年9月25日下午4點(diǎn)30分,“神舟七號(hào)”載人飛船發(fā)射升空,其運(yùn)行的軌道是以地球的中心F為一個(gè)焦點(diǎn)的橢圓,若這個(gè)橢圓的長軸長為2a,離心率為e,則“神舟七號(hào)”飛船到地球中心的最大距離為______.答案:如圖,根據(jù)橢圓的幾何性質(zhì)可知,頂點(diǎn)B到橢圓的焦點(diǎn)F的距離最大.最大為a+c=a+ae.故為:a+ae.24.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.25.已知雙曲線的兩條準(zhǔn)線將兩焦點(diǎn)間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.26.對(duì)于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個(gè).答案:殘差的平方和是用來描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.27.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.28.如果命題“曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對(duì)應(yīng)的點(diǎn)都在曲線C上
C.不滿足方程f(x,y)=0的點(diǎn)(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C29.b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機(jī)數(shù).答案:∵b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機(jī)數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機(jī)數(shù),故為:[-6,-3]30.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D31.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:232.對(duì)于平面幾何中的命題:“夾在兩條平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),我們常用由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線這間的平行線段相等”,我們可以推斷在立體幾何中:“夾在兩個(gè)平行平面間的平行線段相等”這個(gè)命題是一個(gè)真命題.故為:“夾在兩個(gè)平行平面間的平行線段相等”.33.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A34.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.35.曲線(θ為參數(shù))上的點(diǎn)到原點(diǎn)的最大距離為()
A.1
B.
C.2
D.答案:C36.給出的下列幾個(gè)命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實(shí)數(shù)λ,使
其中真命題的個(gè)數(shù)為()
A.0
B.1
C.2
D.3答案:B37.在極坐標(biāo)系中,點(diǎn)A(2,π2)關(guān)于直線l:ρcosθ=1的對(duì)稱點(diǎn)的一個(gè)極坐標(biāo)為______.答案:在直角坐標(biāo)系中,A(0,2),直線l:x=1,A關(guān)于直線l的對(duì)稱點(diǎn)B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點(diǎn)B在第一象限,故B的極坐標(biāo)為(22,π4),故為
(22,π4).38.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()
A.(0,1)
B.(0,)
C.(1,0)
D.(,0)答案:B39.與
向量
=(2,-1,2)共線且滿足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D40.求證:答案:證明見解析解析:證明:此題采用了從第三項(xiàng)開始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。41.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時(shí)y=2x∴2a=2∴a=1當(dāng)a>1時(shí)y=log13x∴2=loga13∴a=19不成立所以a=1故為:142.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.43.對(duì)賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達(dá)式的值賦給變量
③可以給一個(gè)變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值。用來表明賦給某一個(gè)變量一個(gè)具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達(dá)式其中“=”為賦值號(hào).故選A。點(diǎn)評(píng):簡單題,賦值語句的一般格式是:變量名=表達(dá)式其中"="為賦值號(hào)。44.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.已知點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的坐標(biāo)為(3,2),試求點(diǎn)P的坐標(biāo);
(Ⅲ)若直線y=kx上的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14
,即P點(diǎn)的坐標(biāo)為(343,14).
(Ⅲ)∵直線y=kx上的任意點(diǎn)P(x,y),其經(jīng)變換后的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時(shí),y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-345.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A46.已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標(biāo)準(zhǔn)方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標(biāo)準(zhǔn)方程為x24+y2=1.47.已知x,y的取值如下表所示:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且y^=0.95x+a,以此預(yù)測當(dāng)x=2時(shí),y=______.答案:∵從所給的數(shù)據(jù)可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴這組數(shù)據(jù)的樣本中心點(diǎn)是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴線性回歸方程是y=0.95x+2.6,∴預(yù)測當(dāng)x=2時(shí),y=0.95×2+2.6=4.5故為:4.548.過P(-1,1),Q(3,9)兩點(diǎn)的直線的斜率為(
)
A.2
B.
C.4
D.答案:A49.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.50.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)第2卷一.綜合題(共50題)1.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B2.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+
AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-223.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()
A.
B.
C.
D.
答案:A4.若向量{}是空間的一個(gè)基底,則一定可以與向量構(gòu)成空間的另一個(gè)基底的向量是()
A.
B.
C.
D.答案:C5.正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時(shí),⊙A與⊙C有2個(gè)交點(diǎn)(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B6.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.7.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對(duì)稱點(diǎn),則|AB|=()
A.10
B.
C.
D.38答案:A8.已知x,y之間的一組數(shù)據(jù):
x0123y1357則y與x的回歸方程必經(jīng)過()A.(2,2)B.(1,3)C.(1.5,4)D.(2,5)答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4)根據(jù)線性回歸方程一定過樣本中心點(diǎn),∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(diǎn)(1.5,4)故選C9.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的反設(shè)為()
A.a(chǎn),b,c中至少有兩個(gè)偶數(shù)
B.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)
C.a(chǎn),b,c都是奇數(shù)
D.a(chǎn),b,c都是偶數(shù)答案:B10.若拋物線y2=2px(p>0)的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為()
A.2
B.4
C.8
D.4答案:C11.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個(gè)虛根為______.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個(gè)虛根為-1-5±10-25i4,-1+5±10+25i4中的一個(gè)故為:-1-5+10-25i4.12.求原點(diǎn)至3x+4y+1=0的距離?答案:由原點(diǎn)坐標(biāo)為(0,0),得到原點(diǎn)到已知直線的距離d=|3?0+4?0+1|32+42=15.13.雙曲線x2n-y2=1(n>1)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.14.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個(gè)不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。15.已知某試驗(yàn)范圍為[10,90],若用分?jǐn)?shù)法進(jìn)行4次優(yōu)選試驗(yàn),則第二次試點(diǎn)可以是(
)。答案:40或60(不唯一)16.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動(dòng)中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B17.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191018.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}19.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(diǎn)(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(diǎn)(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B20.已知矩陣A=12-14,向量a=74.
(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;
(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)21.如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(
).
A.6
B.13
C.
D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.22.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B23.如圖程序框圖表達(dá)式中N=______.答案:該程序按如下步驟運(yùn)行①N=1×2,此時(shí)i變成3,滿足i≤5,進(jìn)入下一步循環(huán);②N=1×2×3,此時(shí)i變成4,滿足i≤5,進(jìn)入下一步循環(huán);③N=1×2×3×4,此時(shí)i變成5,滿足i≤5,進(jìn)入下一步循環(huán);④N=1×2×3×4×5,此時(shí)i變成6,不滿足i≤5,結(jié)束循環(huán)體并輸出N的值因此,最終輸出的N等于1×2×3×4×5=120故為:12024.設(shè)a,b,c都是正數(shù),求證:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:證明略解析:證明
(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.25.已知直線l的斜率為k=-1,經(jīng)過點(diǎn)M0(2,-1),點(diǎn)M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點(diǎn)M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4
(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).26.已知P(B|A)=,P(A)=,則P(AB)等于()
A.
B.
C.
D.答案:C27.直線l經(jīng)過點(diǎn)A(2,-1)和點(diǎn)B(-1,5),其斜率為()
A.-2
B.2
C.-3
D.3答案:A28.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)
(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.29.若不等式的解集,則實(shí)數(shù)=___________.答案:-430.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()
A.
B.0
C.
D.0或答案:D31.下列特殊命題中假命題的個(gè)數(shù)是()
①有的實(shí)數(shù)是無限不循環(huán)小數(shù);
②有些三角形不是等腰三角形;
③有的菱形是正方形.
A.0
B.1
C.2
D.3答案:B32.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點(diǎn)A,PB交圓于點(diǎn)D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,333.若曲線x24+k+y21-k=1表示雙曲線,則k的取值范圍是
______.答案:要使方程為雙曲線方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故為(-∞,-4)∪(1,+∞)34.安排6名演員的演出順序時(shí),要求演員甲不第一個(gè)出場,也不最后一個(gè)出場,則不同的安排方法種數(shù)是()
A.120
B.240
C.480
D.720答案:C35.某農(nóng)科所種植的甲、乙兩種水稻,連續(xù)六年在面積相等的兩塊稻田中作對(duì)比試驗(yàn),試驗(yàn)得出平均產(chǎn)量==415㎏,方差是=794,=958,那么這兩個(gè)水稻品種中產(chǎn)量比較穩(wěn)定的是()
A.甲
B.乙
C.甲、乙一樣穩(wěn)定
D.無法確定答案:A36.在下面的圖示中,結(jié)構(gòu)圖是()
A.
B.
C.
D.
答案:B37.規(guī)定符號(hào)“△”表示一種運(yùn)算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對(duì)于x需x≥0,∴對(duì)于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域?yàn)閇1,+∞)故為:[1,+∞)38.(幾何證明選講選選做題)如圖,圓的兩條弦AC、BD相交于P,弧AB、BC、CD、DA的度數(shù)分別為60°、105°、90°、105°,則PAPC=______.答案:連接AB,CD∵弧AB、CD、的度數(shù)分別為60°、90°,∴弦AB的長度等于半徑,弦CD的長度等于半徑的2倍,即ABCD=12,∵∠A=∠D,∠C=∠B,∴△ABP∽△CDP∴ABCD=PAPC∴PAPC=12=22,故為:2239.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).40.證明空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.41.在平行六面體ABCD-A′B′C′D′中,向量是()
A.有相同起點(diǎn)的向量
B.等長的向量
C.共面向量
D.不共面向量答案:C42.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C43.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1044.設(shè)、、是三角形的邊長,求證:
≥答案:證明見解析解析:證明:由不等式的對(duì)稱性,不防設(shè)≥≥,則≥左式-右式≥≥≥045.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C46.設(shè)集合A={0,1,2,3},B={1,2,3,4},則集合A∩B的真子集的個(gè)數(shù)為()A.32個(gè)B.16個(gè)C.8個(gè)D.7個(gè)答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選D.47.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C48.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()
A.35
B.25
C.15
D.7答案:C49.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結(jié)構(gòu)特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺(tái)組成。球的半徑為1,圓臺(tái)的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺(tái)=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺(tái)=46πcm2。50.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯(cuò)誤.故選B.第3卷一.綜合題(共50題)1.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.2.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個(gè)
B.36個(gè)
C.100個(gè)
D.225個(gè)答案:D3.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0
(c>0)之間的距離為,則等于()
A.-2
B.-6
C..2
D.0答案:A4.設(shè)O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同終點(diǎn)的向量
C.相等向量
D.模相等的向量答案:D5.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則動(dòng)點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對(duì)于在平面內(nèi),若動(dòng)點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動(dòng)點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.6.已知圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺(tái)的體積.答案:∵圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺(tái)的體積V=13×3×(4π+4π?25π+25π)=39πcm3.7.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.8.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()
A.a(chǎn)<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a(chǎn)<b<1<d<c
答案:B9.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍
______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.10.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D11.運(yùn)行如圖的程序,將自然數(shù)列0,1,2,…依次輸入作為a的值,則輸出結(jié)果x為______.
答案:當(dāng)n=2時(shí),x=5×6+0=30,當(dāng)n=1時(shí),x=30×6+1=181,當(dāng)n=0時(shí),x=181×6+2=1088,故為:108812.已知正方形的邊長為2,AB=a,BC=b,AC=c,則|a+b+c|=()A.0B.2C.2D.4答案:由題意可得:AB+BC=AC,所以c=a+b,所以|a+b+c|=2|c|.因?yàn)檎叫蔚倪呴L為2,所以|AC|=|c|=2,所以|a+b+c|=2|c|=4.故選D.13.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.14.若e1,e2是兩個(gè)不共線的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點(diǎn)共線,則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因?yàn)锳,B,D三點(diǎn)共線,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-415.設(shè)向量不共面,則下列集合可作為空間的一個(gè)基底的是(
)
A.{}
B.{}
C.{}
D.{}
答案:C16.若曲線C的極坐標(biāo)方程為
ρcos2θ=2sinθ,則曲線C的普通方程為______.答案:曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,即ρ2?cos2θ=2ρsinθ,化為直角坐標(biāo)方程為x2=2y,故為x2=2y17.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x23+y2=1上的一個(gè)動(dòng)點(diǎn),求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時(shí),S取最大值2.18.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3219.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3320.如圖,PT是⊙O的切線,切點(diǎn)為T,直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3221.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C22.求原點(diǎn)至3x+4y+1=0的距離?答案:由原點(diǎn)坐標(biāo)為(0,0),得到原點(diǎn)到已知直線的距離d=|3?0+4?0+1|32+42=15.23.某初級(jí)中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),求得間隔數(shù)k==16,即每16人抽取一個(gè)人.在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從33~48這16個(gè)數(shù)中應(yīng)取的數(shù)是(
)
A.40
B.39
C.38
D.37答案:B24.設(shè)四邊形ABCD中,有且,則這個(gè)四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C25.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點(diǎn)在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)26.某種燈泡的耐用時(shí)間超過1000小時(shí)的概率為0.2,有3個(gè)相互獨(dú)立的燈泡在使用1000小時(shí)以后,最多只有1個(gè)損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D27.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.28.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.29.圓的極坐標(biāo)方程是ρ=2cosθ+2sinθ,則其圓心的極坐標(biāo)是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A30.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對(duì)應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.31.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時(shí),(1+x)m≥1+mx;即1≥1成立,x≠0時(shí),證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時(shí),原不等式成立;當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時(shí),不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時(shí),∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時(shí),不等式也成立.綜合(ⅰ)(ⅱ)知,對(duì)一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時(shí),(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時(shí),3≠4,等式不成立;當(dāng)n=2時(shí),32+42=52,等式成立;當(dāng)n=3時(shí),33+43+53=63,等式成立;當(dāng)n=4時(shí),34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時(shí),同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時(shí),原不等式中等號(hào)顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時(shí),m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時(shí),不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時(shí),因?yàn)閤>-1,所以1+x>0.又因?yàn)閤≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時(shí),不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.下同解法1.32.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.33.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個(gè)邊長為a的正方形和1個(gè)邊長為b的正方形以及4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個(gè)邊長為c的正方形和4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個(gè)正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個(gè)錯(cuò)誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個(gè)邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個(gè)矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c234.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個(gè)數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.35.教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過建立直角坐標(biāo)系,用代數(shù)中的函數(shù)思想來解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.36.命題“三角形中最多只有一個(gè)內(nèi)角是直角”的結(jié)論的否定是()
A.有兩個(gè)內(nèi)角是直角
B.有三個(gè)內(nèi)角是直角
C.至少有兩個(gè)內(nèi)角是直角
D.沒有一個(gè)內(nèi)角是直角答案:C37.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C38.不等式lgxx<0的解集是______.答案:∵lgx的定義域?yàn)椋?,+∞)∴x>0∵l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 造型的表現(xiàn)力 課件 2024-2025學(xué)年人教版初中美術(shù)八年級(jí)上冊(cè)
- 人教新目標(biāo)Go For It!八年級(jí)上冊(cè) Unit 6 I'm going to study computer science. Section B
- 核電汽輪機(jī)的特點(diǎn)
- 常見慢性病的防治
- 2024年四川省宜賓市初二年級(jí)學(xué)業(yè)水平考試地理試卷含答案
- 2014年大輸液行業(yè)市場分析報(bào)告
- 2024至2030年中國成套電控裝置數(shù)據(jù)監(jiān)測研究報(bào)告
- 2013-2016年中國那曲電信移動(dòng)市場發(fā)展?fàn)顩r分析研究報(bào)告
- 2024至2030年中國噴油嘴檢測清洗儀數(shù)據(jù)監(jiān)測研究報(bào)告
- 2024至2030年中國單人溫步機(jī)數(shù)據(jù)監(jiān)測研究報(bào)告
- 2021年江蘇交通控股有限公司校園招聘筆試試題及答案解析
- 榮譽(yù)證書模板范例可修改
- 室間隔缺損護(hù)理查房-課件
- 可口可樂生產(chǎn)廢水處理工藝的設(shè)計(jì)論文說明
- 2021年廣東恒健投資控股有限公司校園招聘筆試試題及答案解析
- 學(xué)校節(jié)約能源管理實(shí)施細(xì)則
- 吊裝安全確認(rèn)表及技術(shù)交底
- 產(chǎn)業(yè)園項(xiàng)目法律服務(wù)方案參考范本
- 部編版語文六年級(jí)上冊(cè)總復(fù)習(xí)《判斷題》專項(xiàng)復(fù)習(xí)
- 建筑工程制圖與CAD說課課件
- 結(jié)腸息肉管理
評(píng)論
0/150
提交評(píng)論