版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年閩西職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個(gè)向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:22.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運(yùn)算為通常的實(shí)數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對(duì)于任意的實(shí)數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A3.閱讀程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B4.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤
122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時(shí),即x=12,y=14時(shí),取等號(hào).故為:18.5.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:
則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對(duì)應(yīng)的四邊形是一個(gè)有一組鄰邊相等的平行四邊形,∴這里是一個(gè)菱形,②處的圖形是一個(gè)有一條腰和底邊垂直的梯形,∴②處是一個(gè)直角梯形,故為:菱形;直角梯形.6.
已知向量
=(4,3),=(1,2),若向量
+k
與
-
垂直,則k的值為(
)A.
233B.7C.-
115D.-
233答案:考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.7.如圖所示,正方體的棱長(zhǎng)為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B8.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.9.一個(gè)容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.10.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個(gè)不能被2整除的整數(shù)是偶數(shù)
D.存在一個(gè)能被2整除的整數(shù)不是偶數(shù)答案:D11.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機(jī)變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個(gè)數(shù)可能為4,3,2,1個(gè),黑球相應(yīng)個(gè)數(shù)為0,1,2,3個(gè).其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.12.設(shè)a,b,c是三個(gè)不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個(gè)基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)13.O、B、C為空間四個(gè)點(diǎn),又、、為空間的一個(gè)基底,則()
A.O、A、B、C四點(diǎn)不共線
B.O、A、B、C四點(diǎn)共面,但不共線
C.O、A、B、C四點(diǎn)中任意三點(diǎn)不共線
D.O、A、B、C四點(diǎn)不共面答案:D14.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根,當(dāng)m為何值時(shí),α2+β2有最小值?并求出這個(gè)最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個(gè)實(shí)根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時(shí),α2+β2有最小值,最小值是12.15.已知直線l:ax+by=1(ab>0)經(jīng)過(guò)點(diǎn)P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過(guò)點(diǎn)P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標(biāo)軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當(dāng)且僅當(dāng)4ba=ab時(shí),取等號(hào),故為9.16.欲對(duì)某商場(chǎng)作一簡(jiǎn)要審計(jì),通過(guò)檢查發(fā)票及銷售記錄的2%來(lái)快速估計(jì)每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.這種抽取樣本的方法是()A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個(gè)體比較多,抽樣時(shí)某本50張的發(fā)票存根中隨機(jī)抽一張,如15號(hào),這是系統(tǒng)抽樣中的分組,然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.故選B.17.若方程mx2+(m+1)x+m=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍是()
A.m>0
B.-<m<1
C.-<m<0或0<m<1
D.不確定答案:C18.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.19.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.20.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機(jī)地從1~160編號(hào),按編號(hào)順序平均分成20組(1~8號(hào),9~16號(hào),…,153~160號(hào)),若第16組抽出的號(hào)碼為126,則第1組中用抽簽的方法確定的號(hào)碼是______.答案:不妨設(shè)在第1組中隨機(jī)抽到的號(hào)碼為x,則在第16組中應(yīng)抽出的號(hào)碼為120+x.設(shè)第1組抽出的號(hào)碼為x,則第16組應(yīng)抽出的號(hào)碼是8×15+x=126,∴x=6.故為:6.21.設(shè)雙曲線(a>0,b>0)的右頂點(diǎn)為A,P為雙曲線上的一個(gè)動(dòng)點(diǎn)(不是頂點(diǎn)),從點(diǎn)A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點(diǎn),其中O為坐標(biāo)原點(diǎn),則|OP|2與|OQ|?|OR|的大小關(guān)系為()
A.|OP|2<|OQ|?|OR|
B.|OP|2>|OQ|?|OR|
C.|OP|2=|OQ|?|OR|
D.不確定答案:C22.已知曲線,
θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形答案:C23.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()
A.
B.
C.
D.答案:B24.參數(shù)方程(θ為參數(shù))化為普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D25.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長(zhǎng)為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.26.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.27.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10
NC.20
ND.102N答案:設(shè)向F1,F(xiàn)2的對(duì)應(yīng)向量分別為OA、OB以O(shè)A、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對(duì)應(yīng)力F1,F(xiàn)2的合力∵F1,F(xiàn)2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A28.點(diǎn)P從(2,0)出發(fā),沿圓x2+y2=4按逆時(shí)針?lè)较蜻\(yùn)動(dòng)弧長(zhǎng)到達(dá)點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C29.設(shè)直線過(guò)點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B30.若關(guān)于x的方程x2-2ax+2+a=0有兩個(gè)不相等的實(shí)根,求分別滿足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設(shè)f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。31.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立32.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.33.在空間直角坐標(biāo)系中,點(diǎn),過(guò)點(diǎn)P作平面xOy的垂線PQ,則Q的坐標(biāo)為()
A.
B.
C.
D.答案:D34.如圖,設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB
所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4535.如圖在長(zhǎng)方形ABCD中,AB=,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為()
A.
B.
C.
D.答案:B36.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號(hào).即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號(hào),即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號(hào).故為114.37.如圖,從圓O外一點(diǎn)P引兩條直線分別交圓O于點(diǎn)A,B,C,D,且PA=AB,PC=5,CD=9,則AB的長(zhǎng)等于______.答案:∵PAB和PBC是圓O的兩條割線∴PA?PB=PC?PD又∵PA=AB,PC=5,CD=9,∴2AB2=5×(5+9)∴AB=35故為:3538.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長(zhǎng)為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長(zhǎng)為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.39.雙曲線x225-y29=1的兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,雙曲線上一點(diǎn)P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.40.長(zhǎng)方體的長(zhǎng)、寬、高之比是1:2:3,對(duì)角線長(zhǎng)是214,則長(zhǎng)方體的體積是
______.答案:長(zhǎng)方體的長(zhǎng)、寬、高之比是1:2:3,所以長(zhǎng)方體的長(zhǎng)、寬、高是x:2x:3x,對(duì)角線長(zhǎng)是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長(zhǎng)方體的長(zhǎng)、寬、高是2,4,6;長(zhǎng)方體的體積是:2×4×6=48故為:4841.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.42.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.43.將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,0003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的辦法分成50個(gè)部分.如果第一部分編號(hào)為0001,0002,…,0020,從中隨機(jī)抽取一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為______.答案:∵系統(tǒng)抽樣是先將總體按樣本容量分成k=Nn段,再間隔k取一個(gè).又∵現(xiàn)在總體的個(gè)體數(shù)為1000,樣本容量為50,∴k=20∴若第一個(gè)號(hào)碼為0015,則第40個(gè)號(hào)碼為0015+20×39=0795故為079544.如圖,在正方體OABC-O1A1B1C1中,棱長(zhǎng)為2,E是B1B的中點(diǎn),則點(diǎn)E的坐標(biāo)為()
A.(2,2,1)
B.(2,2,)
C.(2,2,)
D.(2,2,)
答案:A45.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡(jiǎn)為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(diǎn)(x,y)到(4,0),(-4,0)兩點(diǎn)距離差的絕對(duì)值為6,∴軌跡為以(4,0),(-4,0)為焦點(diǎn)的雙曲線,方程為x29-y27=1∴a2-b2=2故為:246.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.47.將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數(shù)的圖象F按向量平移后所得到的圖象的解析式是,求向量.48.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:349.已知離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線l交橢圓C于M、N兩點(diǎn),若OM?ON=463tan∠MON(O為坐標(biāo)原點(diǎn)),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a
2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(3,1).∴3a
2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點(diǎn)為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點(diǎn)O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)50.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點(diǎn)在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C第2卷一.綜合題(共50題)1.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.2.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.3.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D4.已知平面上直線l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()
A.
B.-
C.2
D.-2答案:D5.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.6.若a=()x,b=x3,c=logx,則當(dāng)x>1時(shí),a,b,c的大小關(guān)系式()
A.a(chǎn)<b<c
B.c<b<a
C.c<a<b
D.a(chǎn)<c<b答案:C7.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.8.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D9.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第2列的數(shù)3開始向右讀,請(qǐng)你依次寫出最先檢測(cè)的4顆種子的編號(hào)______,______,______,______.
(下面摘取了隨機(jī)數(shù)表第7行至第9行)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
83
92
12
06
76
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38
15
51
00
13
42
99
66
02
79
54.答案:第8行第2列的數(shù)3開始向右讀第一個(gè)小于850的數(shù)字是301,第二個(gè)數(shù)字是637,也符合題意,第三個(gè)數(shù)字是859,大于850,舍去,第四個(gè)數(shù)字是169,符合題意,第五個(gè)數(shù)字是555,符合題意,故為:301,637,169,55510.設(shè)隨機(jī)變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()
A.0
B.1
C.μ
D.μ答案:C11.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為
______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.12.已知斜二測(cè)畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測(cè)法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長(zhǎng)度變?yōu)樵瓉?lái)的2倍,得到OA,由此得到原三角形的圖形ABC.13.直線x3+y4=1與x,y軸所圍成的三角形的周長(zhǎng)等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標(biāo)軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長(zhǎng)為:OA+OB+AB=3+4+5=12,故選B.14.若一輛汽車每天行駛的路程比原來(lái)多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過(guò)2200km;若它每天行駛的路程比原來(lái)少12km,則它行駛同樣的路程s(km)就得花9天多的時(shí)間。這輛汽車原來(lái)每天行駛的路程(km)的范圍是(
)
A.(259,260)
B.(258,260)
C.(257,260)
D.(256,260)答案:D15.頂點(diǎn)在原點(diǎn),焦點(diǎn)是(0,5)的拋物線方程是()
A.x2=20y
B.y2=20x
C.y2=x
D.x2=y答案:A16.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長(zhǎng)為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+
AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡(jiǎn)-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2217.求下列函數(shù)的定義域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域?yàn)閧x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域?yàn)閧y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域?yàn)閧x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域?yàn)閇0,2).18.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù),故選項(xiàng)B滿足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)D,故選B.19.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()
A.24
B.48
C.144
D.288答案:C20.下列說(shuō)法中正確的是()
A.若∥,則與向相同
B.若||<||,則<
C.起點(diǎn)不同,但方向相同且模相等的兩個(gè)向量相等
D.所有的單位向量都相等答案:C21.已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為(3,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4
b2=1∴x24+
y2=1故為:∴x24+
y2=1.22.已知直線l1:(k-3)x+(4-k)y+1=0,與l2:2(k-3)x-2y+3=0,平行,則k的值是______.答案:當(dāng)k=3時(shí)兩條直線平行,當(dāng)k≠3時(shí)有2=-24-k≠3
所以
k=5故為:3或5.23.設(shè)直線過(guò)點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B24.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B25.某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán)):
聲樂(lè)社排球社武術(shù)社高一4530a高二151020學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果里等抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果聲樂(lè)社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3026.給出命題:
①線性回歸分析就是由樣本點(diǎn)去尋找一條貼近這些點(diǎn)的直線;
②利用樣本點(diǎn)的散點(diǎn)圖可以直觀判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示;
③通過(guò)回歸方程=bx+a及其回歸系數(shù)b可以估計(jì)和預(yù)測(cè)變量的取值和變化趨勢(shì);
④線性相關(guān)關(guān)系就是兩個(gè)變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D27.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()
A.
B.3
C.
D.答案:A28.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長(zhǎng)為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長(zhǎng)為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.29.已知三點(diǎn)A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點(diǎn),則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:330.在平面直角坐標(biāo)系xOy中,若拋物線C:x2=2py(p>0)的焦點(diǎn)為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,p2),又已知焦點(diǎn)為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.31.將命題“正數(shù)a的平方大于零”改寫成“若p,則q”的形式,并寫出它的逆命題、否命題與逆否命題.答案:原命題可以寫成:若a是正數(shù),則a的平方大于零;逆命題:若a的平方大于零,則a是正數(shù);否命題:若a不是正數(shù),則a的平方不大于零;逆否命題:若a的平方不大于零,則a不是正數(shù).32.曲線x2+ay+2y+2=0經(jīng)過(guò)點(diǎn)(2,-1),則a=______.答案:由題意,∵曲線x2+ay+2y+2=0經(jīng)過(guò)點(diǎn)(2,-1),∴22-a-2+2=0∴a=4故為433.函數(shù)y=()|x|的圖象是()
A.
B.
C.
D.
答案:B34.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設(shè)b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據(jù)公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.35.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點(diǎn)為(0,b)當(dāng)0<b<1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在原點(diǎn)和(0,1)點(diǎn)之間,y=logbx為減函數(shù),D圖滿足要求;當(dāng)b>1時(shí),函數(shù)y=ax+b與y軸的交點(diǎn)在(0,1)點(diǎn)上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D36.設(shè)M是□ABCD的對(duì)角線的交點(diǎn),O為任意一點(diǎn)(且不與M重合),則OA+OB+OC+OD
等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點(diǎn),不妨把A點(diǎn)O看成O點(diǎn),則OA+OB+OC+OD=0+AB+AC
+AD,∵M(jìn)是□ABCD的對(duì)角線的交點(diǎn),∴0+AB+AC+AD=2AC=4AM故選D37.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè)球,則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是
______.答案:設(shè)含紅球個(gè)數(shù)為ξ,ξ的可能取值是0、1、2,當(dāng)ξ=0時(shí),表示從中取出2個(gè)球,其中不含紅球,當(dāng)ξ=1時(shí),表示從中取出2個(gè)球,其中1個(gè)紅球,1個(gè)黃球,當(dāng)ξ=2時(shí),表示從中取出2個(gè)球,其中2個(gè)紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.38.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉(zhuǎn)一周形成一個(gè)新的幾何體,想象幾何體的結(jié)構(gòu),畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉(zhuǎn)為例,其直觀圖、正(側(cè))視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.39.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點(diǎn)F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點(diǎn)為原點(diǎn),以頂點(diǎn)和焦點(diǎn)所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點(diǎn)A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點(diǎn)坐標(biāo)為(4,0),而光源到反射鏡頂點(diǎn)的距離正是拋物線的焦距,即4cm.故為:4.40.橢圓焦點(diǎn)在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點(diǎn),滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡(jiǎn)得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.41.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.42.以下命題:
①兩個(gè)共線向量是指在同一直線上的兩個(gè)向量;
②共線的兩個(gè)向量互相平行;
③共面的三個(gè)向量是指在同一平面內(nèi)的三個(gè)向量;
④共面的三個(gè)向量是指平行于同一平面的三個(gè)向量.
其中正確命題的序號(hào)是______.答案:解①根據(jù)共面與共線向量的定義可知①錯(cuò)誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯(cuò)誤.④根據(jù)共面向量的定義可知④正確.故為:②④.43.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.44.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C45.已知定點(diǎn)A(12.0),M為曲線x=6+2cosθy=2sinθ上的動(dòng)點(diǎn),若AP=2AM,試求動(dòng)點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動(dòng)點(diǎn)(x,y)由AP=2AM,即M為線段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=1646.如圖,⊙O是Rt△ABC的外接圓,點(diǎn)O在AB上,BD⊥AB,點(diǎn)B是垂足,OD∥AC,連接CD.
求證:CD是⊙O的切線.答案:證明:連接CO,(1分)∵OD∥AC,∴∠COD=∠ACO,∠CAO=∠DOB.(3分)∵∠ACO=∠CAO,∴∠COD=∠DOB.(6分)∵OD=OD,OC=OB,∴△COD≌△BOD.(8分)∴∠OCD=∠OBD=90°.∴OC⊥CD,即CD是⊙O的切線.(10分)47.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.48.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問(wèn)題的程序框圖;
(2)以下是解決該問(wèn)題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;49.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.50.在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施化肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).
(1)畫出散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請(qǐng)預(yù)測(cè)水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點(diǎn)圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計(jì)算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測(cè),施化肥量為38kg,其他情況不變時(shí),水稻的產(chǎn)量是438kg.第3卷一.綜合題(共50題)1.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長(zhǎng)______.答案:設(shè)另一弦長(zhǎng)xcm;由于另一弦被分為3:8的兩段,故兩段的長(zhǎng)分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm2.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(
)。答案:x2-y2=13.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C4.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.5.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.6.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場(chǎng)比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動(dòng)中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B7.若=(2,-3,1)是平面α的一個(gè)法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D8.若a>0,b<0,直線y=ax+b的圖象可能是()
A.
B.
C.
D.
答案:C9.寫出按從小到大的順序重新排列x,y,z三個(gè)數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個(gè)數(shù)值;(2).從三個(gè)數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.10.若雙曲線的漸近線方程為y=±3x,它的一個(gè)焦點(diǎn)是(10,0),則雙曲線的方程是______.答案:因?yàn)殡p曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個(gè)焦點(diǎn)是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=111.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D12.以橢圓x23+y2=1的右焦點(diǎn)為焦點(diǎn),且頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為______.答案:∵橢圓x23+y2=1的右焦點(diǎn)F(2,0),∴以F(2,0)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=42x.故為:y2=42x.13.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2
再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.14.在邊長(zhǎng)為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.15.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說(shuō)法正確的是()
A.若k2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:D16.設(shè)A=xn+x-n,B=xn-1+x1-n,當(dāng)x∈R+,n∈N+時(shí),求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當(dāng)x≥1時(shí),x-1≥0,x2n-1-1≥0;當(dāng)x<1時(shí),x-1<0,x2n-1<0,即x-1與x2n-1-1同號(hào).∴A-B≥0.∴A≥B.17.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:118.方程4x-3×2x+2=0的根的個(gè)數(shù)是(
)
A.0
B.1
C.2
D.3答案:C19.把平面上一切單位向量的始點(diǎn)放在同一點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是()
A.一條線段
B.一段圓弧
C.圓上一群孤立點(diǎn)
D.一個(gè)單位圓答案:D20.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()
A.“集合”的下位
B.“概念”的下位
C.“表示”的下位
D.“基本運(yùn)算”的下位
答案:D21.若向量、、滿足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C22.下列各圖象中,哪一個(gè)不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個(gè)輸入值對(duì)應(yīng)唯一輸出值的一種對(duì)應(yīng)關(guān)系.選項(xiàng)D,對(duì)于x=1時(shí)有兩個(gè)輸出值與之對(duì)應(yīng),故不是函數(shù)圖象故選D.23.已知x與y之間的一組數(shù)據(jù)是()
x0123y2468則y與x的線性回歸方程y=bx+a必過(guò)點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,5)∵線性回歸直線一定過(guò)樣本中心點(diǎn),∴y與x的線性回歸方程y=bx+a必過(guò)點(diǎn)(1.5,5)故選D.24.執(zhí)行下列程序后,輸出的i的值是()
A.5
B.6
C.10
D.11答案:D25.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.26.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D27.集合A={一條邊長(zhǎng)為2,一個(gè)角為30°的等腰三角形},其中的元素個(gè)數(shù)為()A.2B.3C.4D.無(wú)數(shù)個(gè)答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個(gè)元素,故選C.28.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()
A.40
B.30
C.20
D.12答案:A29.一個(gè)完整的程序框圖至少應(yīng)該包含______.答案:完整程序框圖必須有起止框,用來(lái)表示程序的開始和結(jié)束,還要包括處理框,用來(lái)處理程序的執(zhí)行.故為:起止框、處理框.30.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.31.設(shè)向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房產(chǎn)動(dòng)拆遷協(xié)議書的標(biāo)準(zhǔn)結(jié)構(gòu)
- 中國(guó)近代史一一高考一輪復(fù)習(xí)歷史比較異同類材料分析專練(含答案)
- 專業(yè)體育館場(chǎng)地使用協(xié)議
- 建筑項(xiàng)目勘察設(shè)計(jì)合同范例
- 2024年企業(yè)向個(gè)人租車協(xié)議書模板
- 租房協(xié)議書中的租金支付與違約處理
- 縣級(jí)網(wǎng)絡(luò)商城加盟經(jīng)營(yíng)授權(quán)協(xié)議
- 《鹿角和鹿腿》第二課時(shí)公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 房屋買賣合同范本簡(jiǎn)單版
- 林木采伐權(quán)買賣協(xié)議
- 圓圈正義讀書分享課件
- JGJ107-2016鋼筋機(jī)械連接技術(shù)規(guī)程
- 四平事業(yè)單位筆試真題及答案2024
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(100分)
- 一年級(jí)數(shù)學(xué)上冊(cè)蘇教版《連加、連減》教學(xué)設(shè)計(jì)
- 北師大版數(shù)學(xué)二年級(jí)上冊(cè)小學(xué)數(shù)學(xué)口算、簡(jiǎn)算、計(jì)算、應(yīng)用題及能力提升訓(xùn)練檢測(cè)題(含答案)
- 跨文化商務(wù)交際課程教學(xué)大綱
- 打賭協(xié)議書格式范文
- 化工產(chǎn)品銷售管理制度
- 下丘腦疾病課件
- 班主任專業(yè)能力大賽情景答辯小學(xué)組真題及答案
評(píng)論
0/150
提交評(píng)論