2023年煙臺(tái)幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年煙臺(tái)幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年煙臺(tái)幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年煙臺(tái)幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年煙臺(tái)幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年煙臺(tái)幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.在半徑為1的圓內(nèi)任取一點(diǎn),以該點(diǎn)為中點(diǎn)作弦,則所做弦的長(zhǎng)度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點(diǎn),在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點(diǎn)必須在半徑為12圓內(nèi),則所做弦的長(zhǎng)度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.2.螺母是由

______和

______兩個(gè)簡(jiǎn)單幾何體構(gòu)成的.答案:根據(jù)螺母的結(jié)構(gòu)特征知,是由正六棱柱里面挖去的一個(gè)圓柱構(gòu)成的,故為:正六棱柱,圓柱.3.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過定點(diǎn)()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C4.下列4個(gè)命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確5.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C6.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.7.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].8.每一噸鑄鐵成本y

(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個(gè)單位時(shí),對(duì)應(yīng)的y要增加8個(gè)單位,這里是平均增加8個(gè)單位,故選C.9.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以AC=12a+b,又E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,所以M為AC的中點(diǎn),所以AM=12AC,所以AM=14a+12b.故為:14a+12b.10.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()

A.35

B.25

C.15

D.7答案:C11.圖為一個(gè)幾何體的三視國(guó)科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個(gè)正三角形,其邊長(zhǎng)為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C12.不論k為何實(shí)數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點(diǎn),與曲線x2+y2-2ax+a2-2a-4=0恒有交點(diǎn),必須定點(diǎn)在圓上或圓內(nèi),即:a2+12

≤4+2a所以,-1≤a≤3故為:-1≤a≤3.13.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長(zhǎng)為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20314.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢(shì)由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢(shì),故f(x1)+f(x2)2<f(x1+x22)不成立故選C.15.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.16.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B17.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點(diǎn)到原點(diǎn)的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點(diǎn)到直線2x+y+5=0的距離,d=522+1=5.故選A.18.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12419.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.20.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.21.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.22.向量化簡(jiǎn)后等于()

A.

B.

C.

D.答案:C23.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A24.已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說明M、A、B、C共面,可以判斷A、B、C都是錯(cuò)誤的,則D正確.故選D.25.對(duì)于各數(shù)互不相等的整數(shù)數(shù)組(i1,i2,i3,…in)

(n是不小于2的正整數(shù)),對(duì)于任意p,q∈1,2,3,…,n,當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于______.答案:由題意知當(dāng)p<q時(shí)有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序數(shù)”,在數(shù)組(2,4,3,1)中逆序有2,1;4,3;4,1;3,1共有4對(duì)逆序數(shù)對(duì),故為:4.26.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C27.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為______.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.28.在邊長(zhǎng)為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故為32.29.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A30.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.31.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是鈍角”時(shí),則假設(shè)的內(nèi)容是()

A.三角形中有兩個(gè)內(nèi)角是鈍角

B.三角形中有三個(gè)內(nèi)角是鈍角

C.三角形中至少有兩個(gè)內(nèi)角是鈍角

D.三角形中沒有一個(gè)內(nèi)角是鈍角答案:C32.已知點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()

A.

B.

C.

D.答案:D33.過點(diǎn)(2,4)作直線與拋物線y2=8x只有一個(gè)公共點(diǎn),這樣的直線有()

A.1條

B.2條

C.3條

D.4條答案:B34.已知點(diǎn)M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點(diǎn)的距離,它的最小值轉(zhuǎn)化為原點(diǎn)到直線3x+4y=15的距離:d=155=3.故為3.35.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()

A.

B.a(chǎn)

C.

D.答案:D36.已知直角三角形兩直角邊長(zhǎng)為a,b,求斜邊長(zhǎng)c的一個(gè)算法分下列三步:

①計(jì)算c=a2+b2;

②輸入直角三角形兩直角邊長(zhǎng)a,b的值;

③輸出斜邊長(zhǎng)c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長(zhǎng)a,b的值,第二步:計(jì)算c=a2+b2,第三步:輸出斜邊長(zhǎng)c的值;這樣一來,就是斜邊長(zhǎng)c的一個(gè)算法.故選D.37.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.38.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為56π

(1)寫出直線l的參數(shù)方程;

(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點(diǎn),求|PA|?|PB|答案:(1)由于過點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為

x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點(diǎn)P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t1,則點(diǎn)A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因?yàn)閠1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.39.①附中高一年級(jí)聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個(gè)集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級(jí)聰明的學(xué)生,不是確定的,原因是沒法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒說明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.40.一個(gè)試驗(yàn)要求的溫度在69℃~90℃之間,用分?jǐn)?shù)法安排試驗(yàn)進(jìn)行優(yōu)選,則第一個(gè)試點(diǎn)安排在(

)。(取整數(shù)值)答案:82°41.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()

A.()

B.()

C.()

D.()答案:D42.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為

______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)43.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.44.設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因?yàn)閍,b∈R.“a=O”時(shí)“復(fù)數(shù)a+bi不一定是純虛數(shù)”.“復(fù)數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.45.雙曲線的實(shí)軸長(zhǎng)和焦距分別為()

A.

B.

C.

D.答案:C46.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.47.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長(zhǎng)為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡(jiǎn)-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2248.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長(zhǎng)為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長(zhǎng)為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長(zhǎng)為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長(zhǎng)度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.49.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn),n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)50.如圖是一個(gè)幾何體的三視圖(單位:cm),則這個(gè)幾何體的表面積是()A.(7+2)

cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:圖中的幾何體可看成是一個(gè)底面為直角梯形的直棱柱.直角梯形的上底為1,下底為2,高為1;棱柱的高為1.可求得直角梯形的四條邊的長(zhǎng)度為1,1,2,2.所以此幾何體的表面積S表面=2S底+S側(cè)面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故選A.第2卷一.綜合題(共50題)1.“x2>2012”是“x2>2011”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由于“x2>2

012”時(shí),一定有“x2>2

011”,反之不成立.所以“x2>2

012”是“x2>2

011”的充分不必要條件.故選A.2.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識(shí)對(duì)抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個(gè)分類計(jì)數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.3.將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(4)=()

816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項(xiàng)和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.4.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F

是棱CD上的動(dòng)點(diǎn).

(Ⅰ)試確定點(diǎn)F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時(shí),求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點(diǎn),分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點(diǎn)F是CD的中點(diǎn)時(shí),D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時(shí),F(xiàn)是CD的中點(diǎn),F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個(gè)法向量為m=(0,0,1),設(shè)平面C1EF的一個(gè)法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個(gè)法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因?yàn)楫?dāng)把m,n都移向這個(gè)二面角內(nèi)一點(diǎn)時(shí),m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因?yàn)锽A1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.5.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.6.設(shè)a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.7.如圖算法輸出的結(jié)果是______.答案:當(dāng)I=1時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=2,I=4;當(dāng)I=4時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=4,I=7;當(dāng)I=7時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=8,I=10;當(dāng)I=10時(shí),滿足循環(huán)的條件,進(jìn)而循環(huán)體執(zhí)行循環(huán)則S=16,I=13;當(dāng)I=13時(shí),不滿足循環(huán)的條件,退出循環(huán),輸出S值16故為:168.要從已編號(hào)(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號(hào)可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B9.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點(diǎn),求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時(shí),1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時(shí),k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時(shí),第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個(gè)平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時(shí),命題也成立.由(1)(2)知,對(duì)一切n∈N*,命題都成立.10.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.11.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)12.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個(gè)偶數(shù)時(shí),下列假設(shè)正確的是()

A.假設(shè)a、b、c都是偶數(shù)

B.假設(shè)a、b、c都不是偶數(shù)

C.假設(shè)a、b、c至多有一個(gè)偶數(shù)

D.假設(shè)a、b、c至多有兩個(gè)偶數(shù)答案:B13.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個(gè)特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對(duì)任意x0∈R,使x02+1≥0”故為:對(duì)任意x0∈R,使x02+1≥014.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()

A.

B.

C.

D.

答案:A15.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.16.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A17.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因?yàn)?<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.18.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡(jiǎn)單隨機(jī)抽樣B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡(jiǎn)單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D19.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D20.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.21.若矩陣M=1101,則直線x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x,y)是所得的直線上一點(diǎn),[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.22.已知隨機(jī)變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A23.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.24.已知雙曲線的兩個(gè)焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C25.已知圓O的兩弦AB和CD延長(zhǎng)相交于E,過E點(diǎn)引EF∥CB交AD的延長(zhǎng)線于F,過F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.26.已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D27.教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.答案:這兩章的內(nèi)容都是通過建立直角坐標(biāo)系,用代數(shù)中的函數(shù)思想來解決圖形中的幾何性質(zhì).故為用代數(shù)的方法研究圖形的幾何性質(zhì)解析:教材中“坐標(biāo)平面上的直線”與“圓錐曲線”兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是______.28.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個(gè)程序,但有幾處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.29.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時(shí),tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.30.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是(

A.

B.

C.

D.答案:B31.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.a(chǎn)x-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A32.若k∈R,則“k>3”是“方程表示雙曲線”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:A33.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

,

相加得:左3……………(10分)34.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B35.已知某一隨機(jī)變量ξ的分布列如下,且Eξ=6.3,則a的值為()

ξ

4

a

9

P

0.5

0.1

b

A.5

B.6

C.7

D.8答案:C36.設(shè)圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點(diǎn)P的坐標(biāo)為(2,1),那么()

A.點(diǎn)P在直線L上,但不在圓M上

B.點(diǎn)P在圓M上,但不在直線L上

C.點(diǎn)P既在圓M上,又在直線L上

D.點(diǎn)P既不在直線L上,也不在圓M上答案:C37.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2038.一只袋中裝有2個(gè)白球、3個(gè)紅球,這些球除顏色外都相同.

(Ⅰ)從袋中任意摸出1個(gè)球,求摸到的球是白球的概率;

(Ⅱ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球都是白球的概率;

(Ⅲ)從袋中任意摸出2個(gè)球,求摸出的兩個(gè)球顏色不同的概率.答案:(Ⅰ)從5個(gè)球中摸出1個(gè)球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個(gè)球,摸到白球的概率為25.

…(4分)(Ⅱ)從袋中任意摸出2個(gè)球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個(gè)球,摸出的兩個(gè)球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個(gè)球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個(gè)球,摸出的2個(gè)球顏色不同的概率為610=35.

…(14分)39.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).40.點(diǎn)P(x,y)是橢圓2x2+3y2=12上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準(zhǔn)方程,得x26+y24=1,∴這個(gè)橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.41.在極坐標(biāo)系中,過點(diǎn)p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A42.有這樣一段“三段論”推理,對(duì)于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);小前提:因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中錯(cuò)誤的原因是______錯(cuò)誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn)”,不是真命題,因?yàn)閷?duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時(shí)和當(dāng)x<x0時(shí)的導(dǎo)函數(shù)值異號(hào)時(shí),那么x=x0是函數(shù)f(x)的極值點(diǎn),∴大前提錯(cuò)誤,故為:大前提.43.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對(duì)應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)44.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個(gè)人中選出2個(gè)人當(dāng)代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.45.經(jīng)過拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A46.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;

④拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.

其中正確命題的標(biāo)號(hào)是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù),如這個(gè)常數(shù)正好為兩個(gè)點(diǎn)的距離,則動(dòng)點(diǎn)的軌跡是兩點(diǎn)的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.故④正確.故為:②④.47.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(diǎn)(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.48.設(shè)O是平行四邊形ABCD的兩條對(duì)角線AC與BD的交點(diǎn),對(duì)于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號(hào)).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.49.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B50.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.第3卷一.綜合題(共50題)1.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點(diǎn)最多只能有一個(gè)交點(diǎn).從而排除A,B,C,故選D.2.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點(diǎn)P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)3.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對(duì)稱點(diǎn),則|AB|=()

A.10

B.

C.

D.38答案:A4.(本題滿分12分)已知對(duì)任意的平面向量,把繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)角,得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)角得到點(diǎn)P

①已知平面內(nèi)的點(diǎn)A(1,2),B,把點(diǎn)B繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)

②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時(shí)針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡是曲線,求原來曲線C的方程.答案:解:

……2分

……6分

解得x="0,y="-1

……7分②

…………10分

即…………11分又x’2-y’2="1

"……12分

……13分

化簡(jiǎn)得:

……14分解析:略5.若實(shí)數(shù)X、少滿足,則的范圍是()

A.[0,4]

B.(0,4)

C.(-∝,0]U[4,+∝)

D.(-∝,0)U(4,+∝))答案:D6.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.7.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.8.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項(xiàng)?答案:因?yàn)椋簭牡谝粋€(gè)括號(hào)中選一個(gè)字母有3種方法,從第二個(gè)括號(hào)中選一個(gè)字母有4種方法,從第三個(gè)括號(hào)中選一個(gè)字母有5種方法.故根據(jù)乘法計(jì)數(shù)原理可知共有N=3×4×5=60(項(xiàng)).9.拋物線x=14ay2的焦點(diǎn)坐標(biāo)為()A.(116a,0)B.(a,0)C.(0,116a)D.(0,a)答案:拋物線x=14ay2可化為:y2=4ax,它的焦點(diǎn)坐標(biāo)是(a,0)故選B.10.設(shè)復(fù)數(shù)z滿足條件|z|=1,那么|z+22+i|的最大值是______.答案:∵|z|=1,∴可設(shè)z=cosα+sinα,于是|z+22+i|=|cosα+22+(sinα+1)i|=(cosα+22)2+(sinα+1)2=10+6sin(α+θ)≤10+6=4.∴|z+22+i|的最大值是4.故為411.某廠生產(chǎn)電子元件,其產(chǎn)品的次品率為5%.現(xiàn)從一批產(chǎn)品中任意的連續(xù)取出2件,寫出其中次品數(shù)ξ的概率分布.答案:依題意,隨機(jī)變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數(shù)ξ的概率分布是:12.已知定點(diǎn)A(12.0),M為曲線x=6+2cosθy=2sinθ上的動(dòng)點(diǎn),若AP=2AM,試求動(dòng)點(diǎn)P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動(dòng)點(diǎn)(x,y)由AP=2AM,即M為線段AP的中點(diǎn)故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動(dòng)點(diǎn)P的軌跡C的方程為x2+y2=1613.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡(jiǎn)得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.14.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()

A.都是兩個(gè)點(diǎn)

B.一條直線和一個(gè)圓

C.前者為兩個(gè)點(diǎn),后者是一條直線和一個(gè)圓

D.前者是一條直線和一個(gè)圓,后者是兩個(gè)圓答案:D15.參數(shù)方程(θ為參數(shù))表示的曲線是()

A.直線

B.圓

C.橢圓

D.拋物線答案:C16.某班有40名學(xué)生,其中有15人是共青團(tuán)員.現(xiàn)將全班分成4個(gè)小組,第一組有學(xué)生10人,共青團(tuán)員4人,從該班任選一個(gè)學(xué)生代表.在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團(tuán)員共有15人,而第一小組有4人是共青團(tuán)員,故在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為415,故選A.17.若方程2ax2-x-1=0在(0,1)內(nèi)恰有一解,則a的取值范圍是______.答案:當(dāng)a>0時(shí),方程對(duì)應(yīng)的函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一解,必有f(0)?f(1)<0,即-1×(2a-2)<0,解得a>1當(dāng)a≤0時(shí)函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰無解.故為:a>118.不等式﹣2x+1>0的解集是(

).答案:{x|x<}19.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.20.一元二次不等式ax2+bx+c≤0的解集是全體實(shí)數(shù)所滿足的條件是(

)

A.

B.

C.

D.答案:D21.已知在一場(chǎng)比賽中,甲運(yùn)動(dòng)員贏乙、丙的概率分別為0.8,0.7,比賽沒有平局.若甲分別與乙、丙各進(jìn)行一場(chǎng)比賽,則甲取得一勝一負(fù)的概率是______.答案:根據(jù)題意,甲取得一勝一負(fù)包含兩種情況,甲勝乙負(fù)丙,概率為:0.8×0.3=0.24;甲勝丙負(fù)乙,概率為:0.2×0.7=0.14;∴甲取得一勝一負(fù)的概率為0.24+0.14=0.38故為0.3822.下列各組幾何體中是多面體的一組是(

A.三棱柱、四棱臺(tái)、球、圓錐

B.三棱柱、四棱臺(tái)、正方體、圓臺(tái)

C.三棱柱、四棱臺(tái)、正方體、六棱錐

D.圓錐、圓臺(tái)、球、半球答案:C23.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問:(1)這種猜想,你認(rèn)為正確嗎?

(2)不管猜想是否正確,這個(gè)結(jié)論是通過什么推理方法得到的?

(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立24.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,點(diǎn)M在AB上,且AM=13AB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.25.為了檢測(cè)某種產(chǎn)品的直徑(單位mm),抽取了一個(gè)容量為100的樣本,其頻率分布表(不完整)如下:

分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成頻率分布表;

(Ⅱ)畫出頻率分布直方圖;

(Ⅲ)據(jù)上述圖表,估計(jì)產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.26.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡(jiǎn)單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.27.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價(jià)于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.28.雙曲線的漸進(jìn)線方程是3x±4y=0,則雙曲線的離心率等于______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時(shí),ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時(shí),ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.29.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對(duì)邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.30.某初級(jí)中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校預(yù)備年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),求得間隔數(shù)k==16,即每16人抽取一個(gè)人.在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從33~48這16個(gè)數(shù)中應(yīng)取的數(shù)是(

A.40

B.39

C.38

D.37答案:B31.關(guān)于x的方程x2+4x+k=0有一個(gè)根為-2+3i(i為虛數(shù)單位),則實(shí)數(shù)k=______.答案:由韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1332.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A是拋物線上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論