版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,且,則在方向上的投影為()A. B. C. D.2.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.3.已知,滿足約束條件,則的最大值為A. B. C. D.4.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.15.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.6.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2827.已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.9.已知集合,,,則()A. B. C. D.10.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于11.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.12.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.14.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為__________.15.在中,內(nèi)角的對(duì)邊分別為,已知,則的面積為___________.16.已知內(nèi)角,,的對(duì)邊分別為,,.,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.18.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值19.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長(zhǎng).20.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.2.B【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.3.D【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.4.A【解析】
由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.5.C【解析】
設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.6.B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題7.B【解析】
利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè),則有且只有一個(gè)實(shí)數(shù)根.當(dāng)時(shí),當(dāng)時(shí),,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得,則是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),,此時(shí)函數(shù)有無數(shù)個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),當(dāng)時(shí),,此時(shí)最小值為,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí).綜上所述:或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.8.D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9.A【解析】
求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.10.C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.11.B【解析】
根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.12.A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.14.【解析】
由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)?,則,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.15.【解析】
由余弦定理先算出c,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點(diǎn)睛】本題考查利用余弦定理求解三角形的面積,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.16.【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點(diǎn)睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)分布列見解析,期望為20【解析】
利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對(duì)應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對(duì)應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、??碱}型.18.(1);(2)【解析】
(1)由得,兩式相減可得是從第二項(xiàng)開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)椋?,兩式相減得:,即,是從第二項(xiàng)開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.19.(1);(2)【解析】
(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識(shí)的運(yùn)用,屬于中檔題.20.(1)見解析;(2)【解析】
(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進(jìn)而由線面垂直的判定定理證明平面.(2)建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,由空間向量法求得兩個(gè)平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質(zhì)應(yīng)用,空間向量法求二面角的大小,屬于中檔題.21.(1)(2)的遞減區(qū)間為和【解析】
(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.22.(1)(2)【解析】
(1)利用消參法以及點(diǎn)求解出的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療衛(wèi)生BT施工合同
- 倉儲(chǔ)物流中心施工協(xié)議范本
- 航空客服人員招聘協(xié)議
- 透析中心護(hù)士聘用合同
- 影視制作公司編劇聘用合同模板
- 高端制造業(yè)園區(qū)按揭合同樣本
- 展覽館互動(dòng)展區(qū)欄桿安裝合同
- 動(dòng)物園人工打水井施工合同
- 鏟車過戶合同范例
- 預(yù)交款合同三篇
- 于永正教育文集:于永正:我怎樣教語文
- XX市選調(diào)生跟班學(xué)習(xí)鑒定表
- 稅務(wù)主管工作總結(jié)
- 家政服務(wù)公司項(xiàng)目融資計(jì)劃書
- 統(tǒng)編版語文六年級(jí)上冊(cè)《第五單元課文復(fù)習(xí)》課件
- 閥門施工方案模板
- 雙閉環(huán)直流調(diào)速系統(tǒng)-
- 環(huán)衛(wèi)-落葉-清理-方案
- 《自我激勵(lì)》課件
- 器械相關(guān)感染的預(yù)防與控制
- 英語四線三格線A4紙打印
評(píng)論
0/150
提交評(píng)論