2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣西建設(shè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內(nèi)任一點(diǎn)P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4

i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個(gè)面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點(diǎn)Q到第i個(gè)面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.2.求原點(diǎn)至3x+4y+1=0的距離?答案:由原點(diǎn)坐標(biāo)為(0,0),得到原點(diǎn)到已知直線的距離d=|3?0+4?0+1|32+42=15.3.甲、乙兩人對一批圓形零件毛坯進(jìn)行成品加工.根據(jù)需求,成品的直徑標(biāo)準(zhǔn)為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機(jī)抽取5件,測得直徑(單位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計(jì)誰加工的零件較好?

(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計(jì)乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時(shí)間A有7種.故P(A)=710.4.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C5.已知△ABC,D為AB邊上一點(diǎn),若AD=2DB,CD=13CA+λCB,則λ=

.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(

CB-CA)=13CA+23CB,∴λ=23,故為:23.6.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c227.若直線l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(

A.點(diǎn)在圓上

B.點(diǎn)在圓內(nèi)

C.點(diǎn)在圓外

D.不能確定答案:C8.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是()

A.2

B.6

C.4

D.12答案:C9.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()

A.平行

B.垂直

C.相交但不垂直

D.不能確定答案:B10.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.11.如果一個(gè)水平放置的圖形的斜二測直觀圖是一個(gè)底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()

A.2+

B.

C.

D.1+答案:A12.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):

x23456y2.23.85.56.57.0(1)請?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

y=

bx+

a;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?

(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應(yīng)的點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38,所以估計(jì)當(dāng)使用10年時(shí),維修費(fèi)用約為12.38萬元.13.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE=______(用a,b,c表示)答案:在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故為:12a+14b+14c.14.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.15.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°16.已知兩點(diǎn)分別為A(4,3)和B(7,-1),則這兩點(diǎn)之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.17.一個(gè)箱子中裝有質(zhì)量均勻的10個(gè)白球和9個(gè)黑球,一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個(gè)白球中取5個(gè)白球有C105種9個(gè)黑球中取5個(gè)黑球有C95種∴一次摸出5個(gè)球,它們的顏色相同的有C105+C95種∴一次摸出5個(gè)球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:2318.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.19.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C20.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()

A.20°

B.40°

C.60°

D.70°答案:D21.設(shè)點(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因?yàn)辄c(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.22.傾斜角為60°的直線的斜率為______.答案:因?yàn)橹本€的傾斜角為60°,所以直線的斜率k=tan60°=3.故為:3.23.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.24.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B25.某學(xué)校為了解該校1200名男生的百米成績(單位:秒),隨機(jī)選擇了50名學(xué)生進(jìn)行調(diào)查.如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計(jì)這1200名學(xué)生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個(gè)小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學(xué)生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.26.設(shè)a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實(shí)數(shù)m,n的值分別為______.答案:因?yàn)閍=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標(biāo)表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.27.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是

______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-128.從直徑AB的延長線上取一點(diǎn)C,過點(diǎn)C作該圓的切線,切點(diǎn)為D,若∠ACD的平分線交AD于點(diǎn)E,則∠CED的度數(shù)是()

A.30°

B.45°

C.60°

D.隨點(diǎn)C的變化而變化答案:B29.若復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),則a、b應(yīng)滿足的條件是()A.a(chǎn)=0,b≠0B.a(chǎn)≠0,b≠0C.a(chǎn)≠0,b∈RD.b≠0,a∈R答案:∵復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),∴根據(jù)虛數(shù)的定義得b≠0,a∈R,故選D.30.設(shè)斜率為2的直線l過拋物線y2=ax(a>0)的焦點(diǎn)F,且和y軸交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為______.答案:焦點(diǎn)坐標(biāo)(a4,0),|0F|=a4,直線的點(diǎn)斜式方程y=2(x-a4)在y軸的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故為:y2=8x31.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C32.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p33.已知A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21534.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.35.若直線

3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()

A.-1

B.1

C.3

D.-3答案:B36.命題“方程|x|=1的解是x=±1”中,使用邏輯詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“或”C.使用了邏輯連接詞“且”D.使用了邏輯連接詞“或”與“且”答案:∵命題“方程|x|=1的解是x=±1”等價(jià)于命題“方程|x|=1的解是x=1或x=-1.”∴該命題使用了邏輯連接詞“或”.故選B.37.已知f(x)=,則不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}38.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.39.如圖,四邊形OABC是邊長為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B40.給定點(diǎn)A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個(gè)命題:

①當(dāng)點(diǎn)A在圓C上時(shí),直線l與圓C相切;

②當(dāng)點(diǎn)A在圓C內(nèi)時(shí),直線l與圓C相離;

③當(dāng)點(diǎn)A在圓C外時(shí),直線l與圓C相交.

其中正確的命題個(gè)數(shù)是()

A.0

B.1

C.2

D.3答案:D41.如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,

.則⊙O的半徑為(

).

A.6

B.13

C.

D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.42.已知函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個(gè)三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.43.“a=18”是“對任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數(shù)x,2x+ax≥1”為真命題;而“對任意的正數(shù)x,2x+ax≥1的”時(shí),可得“a≥18”即“對任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A44.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C45.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動,使得點(diǎn)P到直線AB的距離為定值a(a>0),則動點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.46.曲線2y2+3x+3=0與曲線x2+y2-4x-5=0的公共點(diǎn)的個(gè)數(shù)是()

A.4

B.3

C.2

D.1答案:D47.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.48.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個(gè)等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.49.電視機(jī)的使用壽命顯像管開關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開關(guān)了10000次還能繼續(xù)使用的概率是0.96,開關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開關(guān)了10000次還能繼續(xù)使用”為事件A,記“開關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.50.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.第2卷一.綜合題(共50題)1.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.2.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:213.A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無窮多個(gè)C.零個(gè)D.一個(gè)或無窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的無數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的一個(gè)大圓故選:D4.下列在曲線上的點(diǎn)是(

A.

B.

C.

D.答案:B5.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個(gè)數(shù)是7+12+6=25故選C6.點(diǎn)P(2,5)關(guān)于直線x+y=1的對稱點(diǎn)的坐標(biāo)是(

)。答案:(-4,-1)7.如圖,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線分別交AE、AB于點(diǎn)F、D.

(Ⅰ)求∠ADF的度數(shù);

(Ⅱ)若AB=AC,求ACBC的值.答案:解

(1)∵AC為圓O的切線,∴∠B=∠EAC,又CD是∠ACB的平分線,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE為圓O的直徑,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形內(nèi)角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=338.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數(shù)成立.9.平面向量的夾角為,則等于(

A.

B.3

C.7

D.79答案:A10.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實(shí)數(shù)k的取值范圍為k≠±1.故為:k≠±1.11.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),則f(x)=______.答案:因?yàn)楹瘮?shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(diǎn)(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.12.如圖示程序運(yùn)行后的輸出結(jié)果為______.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時(shí)i=9∴ai的值為21故為:2113.知x、y、z均為實(shí)數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分14.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.15.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°16.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()

A.R2的值越大,說明殘差平方和越小

B.R2越接近1,表示回歸效果越差

C.R2的值越小,說明殘差平方和越小

D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A17.用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時(shí),左邊=2,右邊=2,等式成立;②假設(shè)n=k時(shí),結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時(shí),等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時(shí),等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立18.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()

A.y2=-8x

B.x2=-8y

C.y2=x或x2=-8y

D.y2=x或y2=8x答案:C19.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因?yàn)閒(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.20.設(shè),則之間的大小關(guān)系是

.答案:b>a>c解析:略21.若方程mx2+(m+1)x+m=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍是()

A.m>0

B.-<m<1

C.-<m<0或0<m<1

D.不確定答案:C22.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點(diǎn)可以構(gòu)成直角三角形B.A,B,C三點(diǎn)可以構(gòu)成銳角三角形C.A,B,C三點(diǎn)可以構(gòu)成鈍角三角形D.A,B,C三點(diǎn)不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點(diǎn)可以構(gòu)成直角三角形,故選A.23.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B24.給出一個(gè)程序框圖,輸出的結(jié)果為s=132,則判斷框中應(yīng)填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A25.在等腰直角三角形ABC中,若M是斜邊AB上的點(diǎn),則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當(dāng)點(diǎn)M位于線段AC內(nèi)時(shí),AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.26.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號.即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號.故為114.27.若矩陣A=是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分?jǐn)?shù).若經(jīng)過一定量的努力,各科能前進(jìn)的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分?jǐn)?shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()

A.語文

B.?dāng)?shù)學(xué)

C.外語

D.都一樣答案:B28.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.29.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.30.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2231.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.32.直線(a+1)x-(2a+5)y-6=0必過一定點(diǎn),定點(diǎn)的坐標(biāo)為(

)。答案:(-4,-2)33.平面上一動點(diǎn)到兩定點(diǎn)距離差為常數(shù)2a(a>0)的軌跡是否是雙曲線,若a>c是否為雙曲線?答案:由題意,設(shè)兩定點(diǎn)間的距離為2c,則2a<2c時(shí),軌跡為雙曲線的一支2a=2c時(shí),軌跡為一條射線2a>2c時(shí),無軌跡.34.經(jīng)過原點(diǎn),圓心在x軸的負(fù)半軸上,半徑等于2的圓的方程是______.答案:∵圓過原點(diǎn),圓心在x軸的負(fù)半軸上,∴圓心的橫坐標(biāo)的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標(biāo)為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=235.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D36.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.37.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時(shí)單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.38.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為

______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)39.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.40.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()

A.

B.

C.

D.答案:D41.若橢圓長軸長與短軸長之比為2,它的一個(gè)焦點(diǎn)是(215,0),則橢圓的標(biāo)準(zhǔn)方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標(biāo)準(zhǔn)方程是x280+y220=1.故為:x280+y220=1.42.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項(xiàng)為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24043.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.44.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:345.已知0≤θ<2π,復(fù)數(shù)icosθ+isinθ>0,則θ的值是()A.π2B.3π2C.(0,π)內(nèi)的任意值D.(0,π2)∪(3π2,2π)內(nèi)的任意值答案:復(fù)數(shù)icosθ+isinθ>0,可得icosθ+sinθ>0,因?yàn)?≤θ<2π,所以θ=π2.故選A.46.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.47.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B48.判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯(cuò)誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域?yàn)镽,g(x)的定義域?yàn)椋簕x|x≥0},故D錯(cuò)誤;故選B.49.某種細(xì)菌在培養(yǎng)過程中,每15分鐘分裂一次(由一個(gè)分裂成兩個(gè)),這種細(xì)菌由1個(gè)繁殖成4096個(gè)需經(jīng)過()A.12小時(shí)B.4小時(shí)C.3小時(shí)D.2小時(shí)答案:設(shè)共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個(gè)小時(shí).故為C50.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.第3卷一.綜合題(共50題)1.一個(gè)正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點(diǎn)的兩條面上的對角線∴AB與CD所成的角為60°故選D.2.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.3.已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為(3,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4

b2=1∴x24+

y2=1故為:∴x24+

y2=1.4.若有以下說法:

①相等向量的模相等;

②若a和b都是單位向量,則a=b;

③對于任意的a和b,|a+b|≤|a|+|b|恒成立;

④若a∥b,c∥b,則a∥c.

其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據(jù)定義,大小相等且方向相同的兩個(gè)向量相等.因此相等向量的模相等,故①正確;因?yàn)閱挝幌蛄康哪5扔?,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據(jù)向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當(dāng)且僅當(dāng)a和b方向相同時(shí)等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A5.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為______.答案:設(shè)所求對稱點(diǎn)為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個(gè)點(diǎn),它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)6.圓(x+3)2+(y-1)2=25上的點(diǎn)到原點(diǎn)的最大距離是()

A.5-

B.5+

C

D.10答案:B7.b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機(jī)數(shù).答案:∵b1是[0,1]上的均勻隨機(jī)數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機(jī)數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機(jī)數(shù),故為:[-6,-3]8.已知原命題“兩個(gè)無理數(shù)的積仍是無理數(shù)”,則:

(1)逆命題是“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”;

(2)否命題是“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”;

(3)逆否命題是“乘積不是無理數(shù)的兩個(gè)數(shù)都不是無理數(shù)”;

其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結(jié)論得到逆命題:“乘積為無理數(shù)的兩數(shù)都是無理數(shù)”,正確.(2)同時(shí)否定原命題的條件和結(jié)論得到否命題:“兩個(gè)不都是無理數(shù)的積也不是無理數(shù)”,正確.(3)同時(shí)否定原命題的條件和結(jié)論,然后在交換條件和結(jié)論得到逆否命題:“乘積不是無理數(shù)的兩個(gè)數(shù)不都是無理數(shù)”.所以逆否命題錯(cuò)誤.故為:(1)(2).9.直線l過橢圓x24+y23=1的右焦點(diǎn)F2并與橢圓交與A、B兩點(diǎn),則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因?yàn)閨AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.10.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點(diǎn),且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點(diǎn)E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點(diǎn)D為AE的中點(diǎn),AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:3411.

008年北京成功舉辦了第29屆奧運(yùn)會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運(yùn)會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類比賽的門票:

比賽項(xiàng)目

票價(jià)(元/場)

籃球

1000

足球

800

乒乓球

500

若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費(fèi)用不超過男籃門票的費(fèi)用,則可以預(yù)訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D12.曲線2y2+3x+3=0與曲線x2+y2-4x-5=0的公共點(diǎn)的個(gè)數(shù)是()

A.4

B.3

C.2

D.1答案:D13.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實(shí)數(shù)m=______.答案:把AB、AC平移,使得點(diǎn)A與原點(diǎn)重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時(shí),AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時(shí),AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時(shí),AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或014.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)的軌跡是()

A.一條直線

B.兩條直線

C.圓

D.橢圓答案:C15.規(guī)定符號“△”表示一種運(yùn)算,即a△b=ab+a+b,其中a、b∈R+;若1△k=3,則函數(shù)f(x)=k△x的值域______.答案:1△k=k+1+k=3,解得k=1,∴k=1∴f(x)=k△x=kx+k+x=x+x+1對于x需x≥0,∴對于f(x)=x+x+1=(x+12)2+34≥1故函數(shù)f(x)的值域?yàn)閇1,+∞)故為:[1,+∞)16.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C17.下面玩擲骰子放球游戲,若擲出1點(diǎn)或6點(diǎn),甲盒放一球;若擲出2點(diǎn),3點(diǎn),4點(diǎn)或5點(diǎn),乙盒放一球,設(shè)擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.

(1)當(dāng)n=3時(shí),設(shè)x=3,y=0的概率;

(2)當(dāng)n=4時(shí),求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當(dāng)n=3時(shí),x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時(shí),有x=3,y=1或x=1,y=3,它的概率為C14

(13)3(23)1+C34(13)1(23)3=4081(12分).18.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個(gè)數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個(gè)數(shù)為8.故為:819.若向量、、滿足++=,=3,=1,=4,則等于(

A.-11

B.-12

C.-13

D.-14答案:C20.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()

A.橢圓

B.圓

C.雙曲線

D.雙曲線的一支答案:B21.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°22.由1,2,3這三個(gè)數(shù)字抽出一部分或全部數(shù)字(沒有重復(fù))所組成的自然數(shù)有______.答案:由題意,一位數(shù)有:1,2,3;兩位數(shù)有:12,21,23,32,13,31;三位數(shù)有:123,132,213,231,321,312故為:1,2,3,12,13,23,21,31,32,123,132,213,231,321,312.23.已知向量=(1,1,-2),=(2,1,),若≥0,則實(shí)數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C24.如圖,AB是平面a的斜線段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動,使得△ABP的面積為定值,則動點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.25.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.26.某航空公司經(jīng)營A,B,C,D這四個(gè)城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價(jià)格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價(jià)格與往返城市間的直線距離成正比,則BD間直線距離的票價(jià)為(設(shè)這四個(gè)城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A27.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個(gè)容量為100的樣本,其頻率分布表(不完整)如下:

分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)

(Ⅰ)完成頻率分布表;

(Ⅱ)畫出頻率分布直方圖;

(Ⅲ)據(jù)上述圖表,估計(jì)產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計(jì)頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.28.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D29.在正方形ABCD中,已知它的邊長為1,設(shè)=,=,=,則|++|的值為(

A.0

B.3

C.2+

D.2答案:D30.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.31.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C32.(幾何證明選講選做題)

如圖,已知PA是圓O的切線,切點(diǎn)為A,直線PO交圓O于B,C兩點(diǎn),AC=2,∠PAB=120°,則切線PA的長度等于______.答案:∵∠PAB=120°,∴優(yōu)弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圓O的切線,切點(diǎn)為A,∴∠OAP=90°∴PA=3OA=23故為:2333.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()

A.相切

B.相離

C.相交

D.相交或相切答案:C34.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因?yàn)椤螦DC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.35.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過9次,那么抽查次數(shù)為9次的概率為(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C36.已知中心在原點(diǎn),對稱軸為坐標(biāo)軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.37.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.38.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論