2023屆安陽市安陽一中學中考押題數(shù)學預測卷含解析_第1頁
2023屆安陽市安陽一中學中考押題數(shù)學預測卷含解析_第2頁
2023屆安陽市安陽一中學中考押題數(shù)學預測卷含解析_第3頁
2023屆安陽市安陽一中學中考押題數(shù)學預測卷含解析_第4頁
2023屆安陽市安陽一中學中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.點P(1,﹣2)關(guān)于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)2.下列各數(shù)中負數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)33.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.94.如圖所示的幾何體的主視圖正確的是()A. B. C. D.5.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>06.下列計算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.根據(jù)如圖所示的程序計算函數(shù)y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣78.計算的結(jié)果是()A.1 B.-1 C. D.9.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)10.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.11.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結(jié)論錯誤的是()A. B. C. D.12.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.14.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).15.太陽半徑約為696000千米,數(shù)字696000用科學記數(shù)法表示為千米.16.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號)17.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.18.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數(shù)的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.20.(6分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調(diào)查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?21.(6分)如圖1,是一個材質(zhì)均勻可自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤的四個扇形面積相等,分別有數(shù)字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止運動時,指針所落扇形中的數(shù)字是幾(當指針落在四個扇形的交線上時,重新轉(zhuǎn)動轉(zhuǎn)盤),就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數(shù)字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數(shù)字是2,就從D開始順時針續(xù)跳2個邊長,落到圈B;……設(shè)游戲者從圈A起跳.(1)嘉嘉隨機轉(zhuǎn)一次轉(zhuǎn)盤,求落回到圈A的概率P1;(2)琪琪隨機轉(zhuǎn)兩次轉(zhuǎn)盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?22.(8分)甲、乙、丙3名學生各自隨機選擇到A、B2個書店購書.(1)求甲、乙2名學生在不同書店購書的概率;(2)求甲、乙、丙3名學生在同一書店購書的概率.23.(8分)如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G,GB=GC.(1)求證:四邊形ABCD是矩形;(1)若△GEF的面積為1.①求四邊形BCFE的面積;②四邊形ABCD的面積為.24.(10分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.25.(10分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?26.(12分)先化簡,再求值:,且x為滿足﹣3<x<2的整數(shù).27.(12分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】關(guān)于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關(guān)于坐標軸對稱的點的坐標,正確地記住關(guān)于坐標軸對稱的點的坐標特征是關(guān)鍵.關(guān)于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數(shù);關(guān)于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數(shù).2、B【解析】

首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點睛】此題考查負數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關(guān)鍵.3、B【解析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.4、D【解析】

主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構(gòu)成.故選D.5、D【解析】

首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號,從而確定答案.【詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項錯誤;B.ab<0,故原選項錯誤;C.a-b<0,故原選項錯誤;D.,正確.故選D.【點睛】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關(guān)系.6、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關(guān)鍵.7、C【解析】

先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計算方法.8、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.9、D【解析】

點在第二象限的條件是:橫坐標是負數(shù),縱坐標是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質(zhì),解題的關(guān)鍵是掌握點的坐標的性質(zhì).10、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.11、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.12、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或1【解析】

圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!14、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側(cè)面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉(zhuǎn)化為數(shù)學問題求解是本題的解題關(guān)鍵.15、.【解析】試題分析:696000=6.96×1,故答案為6.96×1.考點:科學記數(shù)法—表示較大的數(shù).16、40【解析】

利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.17、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當添加輔助線構(gòu)造全等三角形是本題的關(guān)鍵.18、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】

分析:(1)待定系數(shù)法求解可得;

(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),

將點C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點D坐標為(0,-2),

設(shè)直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代入,得:,解得:,

∴直線BD解析式為y=x-2,

∵QM⊥x軸,P(m,0),

∴Q(m,-m2+m+2)、M(m,m-2),

則QM=-m2+m+2-(m-2)=-m2+m+4,

∵F(0,)、D(0,-2),

∴DF=,

∵QM∥DF,

∴當-m2+m+4=時,四邊形DMQF是平行四邊形,

解得:m=-1(舍)或m=3,

即m=3時,四邊形DMQF是平行四邊形;

(3)如圖所示:

∵QM∥DF,

∴∠ODB=∠QMB,

分以下兩種情況:

①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,

則,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

∴,即,

解得:m1=3、m2=4,

當m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,

∴m=3,點Q的坐標為(3,2);

②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,

此時m=-1,點Q的坐標為(-1,0);

綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運用.【詳解】請在此輸入詳解!20、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據(jù)體育人數(shù)80人,占40%,可以求出總?cè)藬?shù).(2)根據(jù)圓心角=百分比×360°即可解決問題.(3)求出藝術(shù)類、其它類社團人數(shù),即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調(diào)查200人.

(2)×360°=108°.∴文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)為108°.

(3)補全如圖,(4)1500×40%=600(人).

∴估計該校喜歡體育類社團的學生有600人.【點睛】此題主要考查了條形圖與統(tǒng)計表以及扇形圖的綜合應用,由條形圖與扇形圖結(jié)合得出調(diào)查的總?cè)藬?shù)是解決問題的關(guān)鍵,學會用樣本估計總體的思想,屬于中考??碱}型.21、(1)落回到圈A的概率P1=;(2)她與嘉嘉落回到圈A的可能性一樣.【解析】

(1)由共有1種等可能的結(jié)果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與最后落回到圈A的情況,再利用概率公式求解即可求得答案;【詳解】(1)∵共有1種等可能的結(jié)果,落回到圈A的只有1種情況,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)∵共有16種等可能的結(jié)果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),∴最后落回到圈A的概率P2==,∴她與嘉嘉落回到圈A的可能性一樣.【點睛】此題考查了列表法或樹狀圖法求概率.注意隨機擲兩次骰子,最后落回到圈A,需要兩次和是1的倍數(shù).22、(1)P=;(2)P=.【解析】試題分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.試題解析:(1)甲、乙兩名學生到A、B兩個書店購書的所有可能結(jié)果有:

從樹狀圖可以看出,這兩名學生到不同書店購書的可能結(jié)果有AB、BA共2種,

所以甲乙兩名學生在不同書店購書的概率P(甲、乙2名學生在不同書店購書)=;(2)甲、乙、丙三名學生AB兩個書店購書的所有可能結(jié)果有:

從樹狀圖可以看出,這三名學生到同一書店購書的可能結(jié)果有AAA、BBB共2種,

所以甲乙丙到同一書店購書的概率P(甲、乙、丙3名學生在同一書店購書)=.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)證明見解析;(1)①16;②14;【解析】

(1)根據(jù)平行四邊形的性質(zhì)得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根據(jù)全等三角形的性質(zhì)得到∠A=∠D,根據(jù)平行線的性質(zhì)得到∠A+∠D=180°,由矩形的判定定理即可得到結(jié)論;(1)①根據(jù)相似三角形的性質(zhì)得到,求得△GBC的面積為18,于是得到四邊形BCFE的面積為16;②根據(jù)四邊形BCFE的面積為16,列方程得到BC?AB=14,即可得到結(jié)論.【詳解】(1)證明:∵GB=GC,∴∠GBC=∠GCB,在平行四邊形ABCD中,∵AD∥BC,AB=DC,AB∥CD,∴GB-GE=GC-GF,∴BE=CF,在△ABE與△DCF中,,∴△ABE≌△DCF,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四邊形ABCD是矩形;(1)①∵EF∥BC,∴△GFE∽△GBC,∵EF=AD,∴EF=BC,∴,∵△GEF的面積為1,∴△GBC的面積為18,∴四邊形BCFE的面積為16,;②∵四邊形BCFE的面積為16,∴(EF+BC)?AB=×BC?AB=16,∴BC?AB=14,∴四邊形ABCD的面積為14,故答案為:14.【點睛】本題考查了相似三角形的判定和性質(zhì),矩形的判定和性質(zhì),圖形面積的計算,全等三角形的判定和性質(zhì),證得△GFE∽△GBC是解題的關(guān)鍵.24、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】

(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設(shè)直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設(shè)直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關(guān)鍵.25、(1)見解析;(2)A;(3)800人.【解析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.26、-5【解析】

根據(jù)分式的運算法則即可求出答案.【詳解】原式=[+]÷=(+)?x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【點睛】本題考查分式的運算法則,解題的關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.27、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論