2023屆福建省重點達(dá)標(biāo)名校中考四模數(shù)學(xué)試題含解析_第1頁
2023屆福建省重點達(dá)標(biāo)名校中考四模數(shù)學(xué)試題含解析_第2頁
2023屆福建省重點達(dá)標(biāo)名校中考四模數(shù)學(xué)試題含解析_第3頁
2023屆福建省重點達(dá)標(biāo)名校中考四模數(shù)學(xué)試題含解析_第4頁
2023屆福建省重點達(dá)標(biāo)名校中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線的圖像與軸交于、兩點(點在點的右側(cè)),與軸交于點.給出下列結(jié)論:①當(dāng)?shù)臈l件下,無論取何值,點是一個定點;②當(dāng)?shù)臈l件下,無論取何值,拋物線的對稱軸一定位于軸的左側(cè);③的最小值不大于;④若,則.其中正確的結(jié)論有()個.A.1個 B.2個 C.3個 D.4個2.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或43.剪紙是我國傳統(tǒng)的民間藝術(shù),下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.4.對于反比例函數(shù)y=﹣2xA.圖象分布在第二、四象限B.當(dāng)x>0時,y隨x的增大而增大C.圖象經(jīng)過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y25.下表是某校合唱團成員的年齡分布,對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)6.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣77.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.48.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm9.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.10.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE二、填空題(本大題共6個小題,每小題3分,共18分)11.比較大小:4(填入“>”或“<”號)12.已知點P(3,1)關(guān)于y軸的對稱點Q的坐標(biāo)是(a+b,﹣1﹣b),則ab的值為_____.13.已知某二次函數(shù)圖像的最高點是坐標(biāo)原點,請寫出一個符合要求的函數(shù)解析式:_______.14.計算:|-3|-1=__.15.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉(zhuǎn)得到△PDE(點C、Q分別與點D、E對應(yīng)),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.16.如圖,在梯形中,,E、F分別是邊的中點,設(shè),那么等于__________(結(jié)果用的線性組合表示).三、解答題(共8題,共72分)17.(8分)某中學(xué)為了考察九年級學(xué)生的中考體育測試成績(滿分30分),隨機抽查了40名學(xué)生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生。18.(8分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.19.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.20.(8分)臺州市某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:(1)求日銷售量y與時間t的函數(shù)關(guān)系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?21.(8分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).22.(10分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.23.(12分)如圖,已知?ABCD.作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長為10,CD=2,求DE的長。24.已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時,直接寫出BC的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

①利用拋物線兩點式方程進行判斷;

②根據(jù)根的判別式來確定a的取值范圍,然后根據(jù)對稱軸方程進行計算;

③利用頂點坐標(biāo)公式進行解答;

④利用兩點間的距離公式進行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點A(1,0).故①正確;

②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個交點,

∴△=(1-a)1+8a=(a+1)1>0,

∴a≠-1.

∴該拋物線的對稱軸為:x=,無法判定的正負(fù).

故②不一定正確;

③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;

④∵A(1,0),B(-,0),C(0,-1),

∴當(dāng)AB=AC時,,解得:a=,故④正確.

綜上所述,正確的結(jié)論有3個.

故選C.【點睛】考查了二次函數(shù)與x軸的交點及其性質(zhì).(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點為拋物線的頂點P;特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個頂點P,坐標(biāo)為P(-b/1a,(4ac-b1)/4a),當(dāng)-=0,〔即b=0〕時,P在y軸上;當(dāng)Δ=b1-4ac=0時,P在x軸上;(3).二次項系數(shù)a決定拋物線的開口方向和大??;當(dāng)a>0時,拋物線開口向上;當(dāng)a<0時,拋物線開口向下;|a|越大,則拋物線的開口越小.(4).一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置;當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;(5).常數(shù)項c決定拋物線與y軸交點;拋物線與y軸交于(0,c);(6).拋物線與x軸交點個數(shù)Δ=b1-4ac>0時,拋物線與x軸有1個交點;Δ=b1-4ac=0時,拋物線與x軸有1個交點;Δ=b1-4ac<0時,拋物線與x軸沒有交點.X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個式子除以1a);當(dāng)a>0時,函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).2、D【解析】

直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關(guān)鍵.3、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.4、D【解析】

根據(jù)反比例函數(shù)圖象的性質(zhì)對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當(dāng)x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.5、D【解析】

由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總?cè)藬?shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.6、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當(dāng)分母不等于零時,分式有意義;當(dāng)分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).7、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負(fù)半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當(dāng)x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.8、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.9、C【解析】

設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.10、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、>【解析】

試題解析:∵<∴4<.考點:實數(shù)的大小比較.【詳解】請在此輸入詳解!12、2【解析】

根據(jù)“關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關(guān)于y軸的對稱點Q的坐標(biāo)是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關(guān)于x軸,y軸對稱的點的坐標(biāo),解題的關(guān)鍵是熟練的掌握關(guān)于y軸對稱的點的坐標(biāo)的性質(zhì).13、等【解析】

根據(jù)二次函數(shù)的圖象最高點是坐標(biāo)原點,可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據(jù)二次函數(shù)的圖象最高點是坐標(biāo)原點,可以得到a<0,b=0,c=0,例如:.【點睛】此題是開放性試題,考查函數(shù)圖象及性質(zhì)的綜合運用,對考查學(xué)生所學(xué)函數(shù)的深入理解、掌握程度具有積極的意義.14、2【解析】

根據(jù)有理數(shù)的加減混合運算法則計算.【詳解】解:|﹣3|﹣1=3-1=2.故答案為2.【點睛】考查的是有理數(shù)的加減運算、乘除運算,掌握它們的運算法則是解題的關(guān)鍵.15、1【解析】

連接AD,根據(jù)PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據(jù)勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結(jié)論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設(shè)PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,

∴CP=3x=1;故答案為:1.【點睛】本題考查平行線的性質(zhì)、旋轉(zhuǎn)變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.16、.【解析】

作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.三、解答題(共8題,共72分)17、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測試成績得滿分的大約有300名學(xué)生.【解析】

(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得m的值;

(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以計算出平均數(shù),得到眾數(shù)和中位數(shù);

(3)根據(jù)樣本中得滿分所占的百分比,可以求得該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有多少名學(xué)生.【詳解】解:(1),∴m的值為25;(2)平均數(shù):,因為在這組樣本數(shù)據(jù)中,28出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,所以眾數(shù)是28;因為將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是28,所以這組樣本數(shù)據(jù)的中位數(shù)為28;(3)×2000=300(名)∴估計該中學(xué)九年級2000名學(xué)生中,體育測試成績得滿分的大約有300名學(xué)生.【點睛】本題考查條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)、眾數(shù),解答本題的關(guān)鍵是明確它們各自的計算方法.18、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標(biāo);當(dāng)P點在第三象限時,同理可求得P點坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標(biāo)為(,)或(﹣,).【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.19、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.20、(1)y=﹣2t+200(1≤t≤80,t為整數(shù));(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】

(1)根據(jù)函數(shù)圖象,設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數(shù)法求解可得;

(2)設(shè)日銷售利潤為w,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)分別求得最值即可判斷;

(3)求出w=2400時t的值,結(jié)合函數(shù)圖象即可得出答案;【詳解】(1)設(shè)解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數(shù));(2)設(shè)日銷售利潤為w,則w=(p﹣6)y,當(dāng)1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當(dāng)t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當(dāng)1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【點睛】本題考查二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)求函數(shù)解析式、由相等關(guān)系得出利潤的函數(shù)解析式、利用二次函數(shù)的圖象解不等式及二次函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.21、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】

(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【點睛】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.22、(1)520千米;(2)300千米/時.【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設(shè)普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時,根據(jù)題意列出分式方程求出未知數(shù)x的值.試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)(2)設(shè)普通列車的平均速度為x千米/時,則高鐵平均速度為2.5x千米/時依題意有:=3解得:x=120經(jīng)檢驗:x=120分式方程的解且符合題意高鐵平均速度:2.5×120=300千米/時答:高鐵平均速度為2.5×120=300千米/時.考點:分式方程的應(yīng)用.23、(1)作圖見解析;(2)1【解析】

(1)以點B為圓心,任意長為半徑畫弧分別與AB、BC相交。然后再分別以交點為圓心,以交點間的距離為半徑分別畫弧,兩弧相交于一點,畫出射線BE即得.(2)根據(jù)平行四邊形的對邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論