版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.2.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=24.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結果影響很大.如圖是對某球員罰球訓練時命中情況的統(tǒng)計:下面三個推斷:①當罰球次數(shù)是500時,該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③5.如果關于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥46.3的倒數(shù)是()A. B. C. D.7.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π8.點A(-1,y1),B(-2,y2)在反比例函數(shù)y=2x的圖象上,則A.y1>y2 B.y1=y2 C.9.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.10.計算(﹣)﹣1的結果是()A.﹣ B. C.2 D.﹣211.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.12.下列事件中,必然事件是()A.若ab=0,則a=0B.若|a|=4,則a=±4C.一個多邊形的內角和為1000°D.若兩直線被第三條直線所截,則同位角相等二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.14.閱讀理解:引入新數(shù),新數(shù)滿足分配律,結合律,交換律.已知,那么________.15.分解因式:x2–4x+4=__________.16.如果不等式無解,則a的取值范圍是________17.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.18.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A或B或C).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某初級中學對畢業(yè)班學生三年來參加市級以上各項活動獲獎情況進行統(tǒng)計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業(yè)時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.20.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.(1)求證:∠G=∠CEF;(2)求證:EG是⊙O的切線;(3)延長AB交GE的延長線于點M,若tanG=,AH=3,求EM的值.21.(6分)某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.22.(8分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.23.(8分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網(wǎng)格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.24.(10分)如圖,已知△ABC.(1)請用直尺和圓規(guī)作出∠A的平分線AD(不要求寫作法,但要保留作圖痕跡);(2)在(1)的條件下,若AB=AC,∠B=70°,求∠BAD的度數(shù).25.(10分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)26.(12分)計算:﹣22﹣+|1﹣4sin60°|27.(12分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關鍵.2、D【解析】
判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數(shù)的時候,a+3一定為正數(shù),所以點P可能在第一象限,一定不在第四象限,
當a為負數(shù)的時候,a+3可能為正數(shù),也可能為負數(shù),所以點P可能在第二象限,也可能在第三象限,
故選D.【點睛】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.3、B【解析】
根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.4、B【解析】
根據(jù)圖形和各個小題的說法可以判斷是否正確,從而解答本題【詳解】當罰球次數(shù)是500時,該球員命中次數(shù)是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【點睛】此題考查了頻數(shù)和頻率的意義,解題的關鍵在于利用頻率估計概率.5、D【解析】
由被開方數(shù)非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.6、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).7、C【解析】
根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.8、C【解析】試題分析:對于反比例函數(shù)y=kx,當k>0時,在每一個象限內,y隨x的增大而減小,根據(jù)題意可得:-1>-2,則y考點:反比例函數(shù)的性質.9、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.10、D【解析】
根據(jù)負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,
故選D.【點睛】本題考查了負整數(shù)指數(shù)冪,負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).11、A【解析】
根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,
∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.12、B【解析】
直接利用絕對值的性質以及多邊形的性質和平行線的性質分別分析得出答案.【詳解】解:A、若ab=0,則a=0,是隨機事件,故此選項錯誤;B、若|a|=4,則a=±4,是必然事件,故此選項正確;C、一個多邊形的內角和為1000°,是不可能事件,故此選項錯誤;D、若兩直線被第三條直線所截,則同位角相等,是隨機事件,故此選項錯誤;故選:B.【點睛】此題主要考查了事件的判別,正確把握各命題的正確性是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關鍵.14、2【解析】
根據(jù)定義即可求出答案.【詳解】由題意可知:原式=1-i2=1-(-1)=2故答案為2【點睛】本題考查新定義型運算,解題的關鍵是正確理解新定義.15、(x–1)1【解析】試題分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考點:分解因式.16、a≥1【解析】
將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【詳解】解得,∵無解,∴a≥1.故答案為a≥1.【點睛】本題考查了解一元一次不等式組,解題的關鍵是熟練的掌握解一元一次不等式組的運算法則.17、或﹣.【解析】
試題分析:當點F在OB上時,設EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.18、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、25%【解析】
首先設這兩年中獲獎人次的平均年增長率為x,則可得八年級的獲獎人數(shù)為48(1+x),九年級的獲獎人數(shù)為48(1+x)2;故根據(jù)題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【詳解】設這兩年中獲獎人次的平均年增長率為x,根據(jù)題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎人次的年平均年增長率為25%20、(1)證明見解析;(2)證明見解析;(3).【解析】試題分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可證明;(2)欲證明EG是⊙O的切線只要證明EG⊥OE即可;(3)連接OC.設⊙O的半徑為r.在Rt△OCH中,利用勾股定理求出r,證明△AHC∽△MEO,可得,由此即可解決問題;試題解析:(1)證明:如圖1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)證明:如圖2中,連接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切線.(3)解:如圖3中,連接OC.設⊙O的半徑為r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.點睛:本題考查圓綜合題、垂徑定理、相似三角形的判定和性質、銳角三角函數(shù)、勾股定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,正確尋找相似三角形,構建方程解決問題嗎,屬于中考壓軸題.21、(1)見解析(2)選擇搖獎【解析】試題分析:(1)畫樹狀圖列出所有等可能結果,再讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;
(2)算出相應的平均收益,比較大小即可.試題解析:(1)樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,∴搖出一紅一白的概率=;(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴搖獎的平均收益是:×18+×24+×18=22,∵22>20,∴選擇搖獎.【點睛】主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據(jù)費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數(shù)解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數(shù)必須為整數(shù),∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.23、(1)(2)見解析;(3)P(0,2).【解析】分析:(1)根據(jù)A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.24、(1)見解析;(2)20°;【解析】
(1)尺規(guī)作一個角的平分線是基本尺規(guī)作圖,根據(jù)作圖步驟即可畫圖;(2)運用等腰三角形的性質再根據(jù)角平分線的定義計算出∠BAD的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年南寧貨運從業(yè)資格證模擬考試題庫及答案
- 2025年營口交通運輸從業(yè)資格證怎樣考試
- 2025購買房地產(chǎn)居間合同
- 2024年度互聯(lián)網(wǎng)醫(yī)療服務平臺運營與推廣合同3篇
- 2024商標許可及聯(lián)合營銷推廣合作協(xié)議3篇
- 單位人力資源管理制度匯編大合集
- 2024實習教師教育實習期間生活服務保障合同2篇
- 廚房刀具安全使用指南
- 電力工程招投標代理協(xié)議范例
- 2024年度全球物流網(wǎng)絡優(yōu)化服務合同3篇
- 乙烯裂解汽油加氫裝置設計
- 計劃分配率和實際分配率_CN
- 小學語文作文技巧六年級寫人文章寫作指導(課堂PPT)
- NLP時間線療法
- JJG596-2012《電子式交流電能表檢定規(guī)程》
- 醫(yī)療質量檢查分析、總結、反饋
- 《APQP培訓資料》
- 通信線路架空光纜通用圖紙指導
- 家具銷售合同,家居訂購訂貨協(xié)議A4標準版(精編版)
- 食品加工與保藏課件
- 銅芯聚氯乙烯絕緣聚氯乙烯護套控制電纜檢測報告可修改
評論
0/150
提交評論