版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某班同學畢業(yè)時都將自己的照片向全班其他同學各送一張表示留念,全班共送1035張照片,如果全班有x名同學,根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10352.7的相反數(shù)是()A.7 B.-7 C. D.-3.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個4.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.5.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間6.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是07.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°8.下列實數(shù)中,結(jié)果最大的是()A.|﹣3| B.﹣(﹣π) C. D.39.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°10.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是()A. B.6 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.12.因式分解:16a3﹣4a=_____.13.已知是方程組的解,則a﹣b的值是___________14.瑞士的一位中學教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.15.已知一個正多邊形的內(nèi)角和是外角和的3倍,那么這個正多邊形的每個內(nèi)角是_____度.16.分式方程=1的解為_________.17.__.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當⊙O半徑為3,CE=2時,求BD長.19.(5分)如圖,直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.20.(8分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關(guān)于x的函數(shù)關(guān)系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.21.(10分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.22.(10分)如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.23.(12分)小明遇到這樣一個問題:已知:.求證:.經(jīng)過思考,小明的證明過程如下:∵,∴.∴.接下來,小明想:若把帶入一元二次方程(a0),恰好得到.這說明一元二次方程有根,且一個根是.所以,根據(jù)一元二次方程根的判別式的知識易證:.根據(jù)上面的解題經(jīng)驗,小明模仿上面的題目自己編了一道類似的題目:已知:.求證:.請你參考上面的方法,寫出小明所編題目的證明過程.24.(14分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:如果全班有x名同學,那么每名同學要送出(x-1)張,共有x名學生,那么總共送的張數(shù)應該是x(x-1)張,即可列出方程.∵全班有x名同學,∴每名同學要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.2、B【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點睛】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.3、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.4、C【解析】
利用相似三角形的性質(zhì)即可判斷.【詳解】設(shè)AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、C【解析】
由可知56,即可解出.【詳解】∵∴56,故選C.【點睛】此題主要考查了無理數(shù)的估算,掌握無理數(shù)的估算是解題的關(guān)鍵.6、A【解析】
判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【點睛】根的判別式7、A【解析】
根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.8、B【解析】
正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關(guān)鍵是要明確:正實數(shù)>0>負實數(shù),兩個負實數(shù)絕對值大的反而?。?、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.10、B【解析】
根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】第一排1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,由此可知:(1,5)表示第1排從左向右第5個數(shù)是,(13,1)表示第13排從左向右第1個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,第13排是奇數(shù)排,最中間的也就是這排的第7個數(shù)是1,那么第1個就是,則(1,5)與(13,1)表示的兩數(shù)之積是1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
連接OC,根據(jù)勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結(jié)論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點睛】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.12、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.13、4;【解析】試題解析:把代入方程組得:,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,則a-b=3+1=4,14、.【解析】
分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個數(shù)的分子是(9+2)2=121;第五個的分母是:32+13=45;第六個的分母是:45+15=60;第七個的分母是:60+17=77;第八個的分母是:77+19=96;則第九個的分母是:96+21=1.因而第九個數(shù)是:.故答案為:.【點睛】主要考查了學生的分析、總結(jié)、歸納能力,規(guī)律型的習題一般是從所給的數(shù)據(jù)和運算方法進行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.15、1.【解析】
先由多邊形的內(nèi)角和和外角和的關(guān)系判斷出多邊形的邊數(shù),即可得到結(jié)論.【詳解】設(shè)多邊形的邊數(shù)為n.因為正多邊形內(nèi)角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內(nèi)角是180°故答案為:1.【點睛】考查多邊形的內(nèi)角和與外角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.16、x=1【解析】分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗:x=1時,x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點睛:此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.17、.【解析】
根據(jù)去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)BD=2.【解析】
(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數(shù)據(jù)即可得到結(jié)果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點睛】本題考查了切線的判定定理:過半徑的外端點且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質(zhì)、三角形相似的判定和性質(zhì).19、(1)詳見解析;(2)(,1).【解析】
(1)根據(jù)勾股定理可得AB的長,即⊙M的直徑,根據(jù)同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構(gòu)建切線AE,根據(jù)特殊的三角函數(shù)值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點A作AE⊥AB于E,交BD的延長線于點E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點E的坐標為(,1).【點睛】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意準確作出輔助線是解此題的關(guān)鍵.20、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解析】【分析】(1)根據(jù)“總利潤=A型電腦每臺利潤×A電腦數(shù)量+B型電腦每臺利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當0<a<100時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數(shù)量滿足33≤x≤60的整數(shù)時,均獲得最大利潤;③當100<a<200時,a﹣100>0,y隨x的增大而增大,∴當x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【點睛】本題考查了一次函數(shù)的應用及一元一次不等式的應用,弄清題意,找出題中的數(shù)量關(guān)系列出函數(shù)關(guān)系式、找出不等關(guān)系列出不等式是解題的關(guān)鍵.21、(1)y=﹣x2+2x+1;(2)當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】
(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關(guān)于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設(shè)點M的坐標為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當∠ACM=90°時,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點M的坐標為(1,);②當∠CAM=90°時,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點M的坐標為(1,﹣).綜上所述:當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點的坐標特征以及勾股定理等知識點.22、(1)證明見解析;(2)AC的長為.【解析】
(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結(jié)論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結(jié)論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質(zhì),切線的判定和性質(zhì),勾股定理,求出BC=8是解本題的關(guān)鍵.23、證明見解析【解析】解:∵,∴.∴.∴是一元二次方程的根.∴,∴.24、(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年消防工程簡易分包協(xié)議2篇
- 2024年標準貨物裝卸作業(yè)合同樣本版B版
- 2024年度在線教育平臺普通合伙合同3篇
- 2025代理合同協(xié)議
- 2024年物業(yè)租賃續(xù)租合同協(xié)議
- 2025農(nóng)產(chǎn)品簡單購銷合同范本
- 2024年危險品運輸企業(yè)運輸車輛安全檢查及維修服務(wù)協(xié)議3篇
- 2024年寄賣商家銷售業(yè)績獎勵協(xié)議2篇
- 2024年度石膏板市場調(diào)研采購合同協(xié)議3篇
- 2025餐飲食品供貨合同范本
- 02565+24273中醫(yī)藥學概論
- 【MOOC】市場調(diào)查與研究-南京郵電大學 中國大學慕課MOOC答案
- 2023年中央紀委國家監(jiān)委機關(guān)直屬單位招聘工作人員考試真題
- 2024-2025學年度教科版初中物理八年級上冊期末模擬卷(含答案)
- 《旅游概論》考試復習題庫(附答案)
- 1000畝水產(chǎn)養(yǎng)殖建設(shè)項目可行性研究報告
- 量子計算與區(qū)塊鏈
- 微電子器件期末復習題含答案
- 廣東珠海市駕車沖撞行人案件安全防范專題培訓
- 2022版ISO27001信息安全管理體系基礎(chǔ)培訓課件
- 廣東省深圳市寶安區(qū)多校2024-2025學年九年級上學期期中歷史試題
評論
0/150
提交評論