大學(xué)物理第五章_第1頁
大學(xué)物理第五章_第2頁
大學(xué)物理第五章_第3頁
大學(xué)物理第五章_第4頁
大學(xué)物理第五章_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五章氣體動理論4.溫度:表示物體的冷熱程度。只具有相對意義。3.熱現(xiàn)象:與物體溫度有關(guān)的物理性質(zhì)及變化統(tǒng)稱為熱現(xiàn)象。實質(zhì)上是組成物體的大量分子、原子熱運動的集體表現(xiàn)。

氣體動理論是在物質(zhì)結(jié)構(gòu)的分子學(xué)說的基礎(chǔ)上,為說明氣體的物理性質(zhì)和氣態(tài)現(xiàn)象而發(fā)展起來的。其研究的是分子熱運動。2.分子熱運動:單個分子——偶然性、無序性大量分子——集中體現(xiàn)出統(tǒng)計規(guī)律性。1.熱運動:與物質(zhì)的冷熱狀態(tài)相關(guān)的運動。6.孤立系統(tǒng):與外界完全隔絕的系統(tǒng)。5.熱力學(xué)系統(tǒng):——熱學(xué)中的研究對象。簡稱系統(tǒng)或體系。

伴隨著能量和質(zhì)量的遷移。宏觀描述(整體上,宏觀上):宏觀量(P、T)熱力學(xué)(第六章)統(tǒng)計物理(第五章)微觀描述(個體上,微觀上):微觀量(m,)討論:宏觀物體所發(fā)生的各種物理現(xiàn)象都是它所包含的大量微觀粒子運動的集體表現(xiàn),因此宏觀量總是一些相應(yīng)的微觀量的統(tǒng)計平均值。一、氣體的狀態(tài)參量1.體積(容積)V

——幾何參量單位:m3,l(升);(1升=1立方分米);1m3=103l2.壓強p——力學(xué)參量單位:Pa(N/m2),atm(標準大氣壓強);

1atm=1.013×105Pa3.溫度T(t)

——化學(xué)參量一切互為熱平衡的系統(tǒng)都具有相同的溫度

——熱力學(xué)第零定律(熱平衡定律)§5-1平衡態(tài)理想氣體的狀態(tài)方程T/k=t/℃

+273.15溫標熱力學(xué)溫標(T)攝氏溫標(t)溫度的數(shù)值表示法二、平衡態(tài)準靜態(tài)過程孤立系統(tǒng)(不受外界影響)最終達到的這種所有宏觀性質(zhì)都不隨時間變化的狀態(tài)叫做平衡態(tài)。如果過程進展得十分緩慢,使所經(jīng)歷的一系列中間狀態(tài)都無限接近平衡狀態(tài),這個過程就叫作準靜態(tài)過程或平衡過程?!硐肽P妥⒁猓?.平衡態(tài)不同于受恒定的外界影響而達到的穩(wěn)定態(tài)。2.熱力學(xué)中處于平衡態(tài)的系統(tǒng)必須同時滿足三種平衡條件:力學(xué)平衡、熱平衡、化學(xué)平衡。3.平衡態(tài)只是一種“宏觀上的寂靜狀態(tài)”,微觀上,大量分子仍在不停地運動著,只是這種運動的效果不變而已。所以平衡態(tài)是一種“熱動平衡狀態(tài)”。4.只有平衡態(tài)下,才可用一組為數(shù)不多的狀態(tài)參量來描述系統(tǒng)的性質(zhì)。一個平衡態(tài)一組狀態(tài)參量狀態(tài)圖上一定點(p,V,T)狀態(tài)圖每個平衡狀態(tài)點每個準靜態(tài)過程

曲線三、理想氣體的狀態(tài)方程其中,R為普適氣體常量(8.31J·mol-1·k-1)理想氣體:密度不太大,溫度不太低(與室溫相比),壓強不太大(與大氣壓相比),理想模型,是實際氣體的抽象化。當質(zhì)量為m、摩爾質(zhì)量為M的理想氣體處于平衡態(tài)時,其狀態(tài)方程為:玻意耳定律PV=c(常量)蓋—呂薩克定律V隨T線性變化查理定律P隨T線性變化T不變P不變V不變定義:(分子數(shù)密度)(玻耳茲曼常量)則p=nkT——理想氣體狀態(tài)方程的另一種形式設(shè)每個分子的質(zhì)量為m0、質(zhì)量為m時的分子數(shù)為N,

阿伏加德羅常量NAP167例5-1

某種柴油機的氣缸容積為0.82710-3m3。

設(shè)壓縮前其中空氣的溫度47oC,壓強為

8.5104Pa。當活塞急劇上升時可把空氣壓縮到原體積的1/17,使壓強增加到4.2106Pa,求這時空氣的溫度。解:把空氣作為理想氣體,考慮空氣的初態(tài)和末態(tài)理想氣體狀態(tài)方程已知p1=8.5104Pa,p2=4.2106Pa,

T1=273K+47K=320K理想氣體狀態(tài)方程理想氣體的過程方程P167例5-2

容器內(nèi)裝有氧氣,質(zhì)量為0.10kg,壓強為

10105Pa

,溫度為470C。因為容器漏氣,經(jīng)過若干時間后,壓強降到原來的5/8,溫度降到270C。問(1)容器的容積有多大?

(2)漏去了多少氧氣?解:(1)初態(tài),理想氣體狀態(tài)方程漏去的氧氣的質(zhì)量為末態(tài),壓強減小到p,溫度降到T’。用M表示剩余的氧氣的質(zhì)量理想氣體狀態(tài)方程P176例5-3

一容器內(nèi)裝有氣體,溫度為270C

問:(1)壓強為1.013105Pa時,在1m3中有多少個分子;

(2)在高真空時,壓強為1.3310-5Pa,

在1m3中有多少個分子?解:按公式p=nkT

可知一、理想氣體的微觀模型和統(tǒng)計假設(shè)a.

分子本身的大小與分子間距相比較,可忽略。b.

除碰撞的瞬間,分子之間及分子與器壁間相互作用可忽略。c.

分子之間和分子與器壁之間的碰撞都是完全彈性的。理想氣體是大量不停地、無規(guī)則地運動著的,無引力的彈性質(zhì)點的集合?!?-3理想氣體的壓強和溫度公式1.關(guān)于每個分子的力學(xué)性質(zhì)的假設(shè)2.關(guān)于分子整體的統(tǒng)計性假設(shè)a.平衡態(tài)時,分子按位置的分布是均勻的。b.平衡態(tài)時,分子按速度方向的分布是均勻的。分子數(shù)密度n為常量二、理想氣體壓強公式壓強:器壁單位面積上所受的平均沖力任取一氣體分子:撞擊A面時,動量改變量:撞擊A面的頻率:(單位時間內(nèi)撞擊次數(shù))16壓強分子單位時間動量改變:A面單位時間受該分子的沖量:即A面受到該分子的平均沖力:17壓強A面受到所有分子的平均沖力:N:容器內(nèi)總分子數(shù)氣體壓強:18壓強n:分子數(shù)密度----分子平均平動動能--理想氣體壓強公式19壓強--理想氣體壓強公式說明:壓強的統(tǒng)計意義:氣體作用在器壁上的壓強描述的是大量分子的整體行為。氣體動理論的壓強公式實際上是三個統(tǒng)計平均量間的一條統(tǒng)計規(guī)律。20壓強三、理想氣體的溫度公式(理想氣體的溫度公式)討論:(1)各種理想氣體分子的平均平動動能只與溫度有關(guān)且僅與熱力學(xué)溫度T成正比。(2)上式作為微觀量與宏觀量T間的一個普適關(guān)系,揭示了溫度T的微觀本質(zhì):溫度標志著物質(zhì)內(nèi)部分子熱運動的劇烈程度,而這種劇烈程度可定量地用的大小來反映。(3)由于是一個統(tǒng)計平均量,所以溫度也只有統(tǒng)計意義,它描述的是大量分子的整體行為。對單個或少量分子只有動能的概念,無所謂的溫度的意義。四、氣體分子的方均根速率大量分子無規(guī)則運動速率平方的平均值的平方根注意:在相同溫度時,各種分子的平均平動動能相等,但方均根速率并不相等,方均根速率不僅取決于溫度,而且與分子的質(zhì)量或氣體的摩爾質(zhì)量有關(guān)。例5-4P176例題5-4§5-4能量均分定理理想氣體的內(nèi)能一、分子的自由度自由度就是確定物體在空間的位置所需要獨立的坐標數(shù)目。24能均分定理1.質(zhì)點:有三個自由度均為平動自由度k=32.剛體:有六個自由度三個為平動自由度k=3三個為轉(zhuǎn)動自由度r=33.棒狀剛體:有五個自由度三個為平動自由度t=3兩個為轉(zhuǎn)動自由度

r=2多原子分子雙原子分子單原子分子∴剛性氣體分子的總自由度i=k+r=3+r二、能量均分定理即分子的平均平動動能均勻地分布在三個平動自由度上。能量均分定理:在溫度T的平衡態(tài)下,分子任何一種運動形式的每一個自由度都具有相同的平均動能。一個自由度為i的剛性理想氣體的平均動能為:剛性單原子分子剛性雙原子分子剛性多原子分子單個理想氣體分子平均動能:1mol理想氣體內(nèi)能:質(zhì)量M的理想氣體內(nèi)能:----理想氣體內(nèi)能公式三、理想氣體的內(nèi)能內(nèi)能=分子熱運動動能+分子力勢能+原子內(nèi)部能量可忽略保持不變(改變可不計)∴理想氣體內(nèi)能=所有分子熱運動動能之和--理想氣體內(nèi)能公式討論:(1)對于給定的氣體:E=E(T)內(nèi)能是溫度的單值函數(shù)(2)理想氣體內(nèi)能是狀態(tài)量,與過程無關(guān)(3)29能均分定理§5-5麥克斯韋速率分布律一、速率分布函數(shù)物理意義:在v附近單位速率區(qū)間內(nèi)的分子數(shù)占總分子數(shù)的百分比。N:表示氣體分子總數(shù):速率分布在內(nèi)的分子數(shù)內(nèi)的分子數(shù)占總分子數(shù)的比率氣體分子的速率分布函數(shù)物理意義:在v附近單位速率區(qū)間內(nèi)的分子數(shù)占總分子數(shù)的百分比。內(nèi)的分子數(shù)占總分子數(shù)的比率(1)速率在v~v+Δv間的分子數(shù):(2)速率在v1~v2間的分子數(shù):(3)速率在0~∞間的分子數(shù):任一速率分布函數(shù)均滿足的歸一化條件二、麥克斯韋速率分布律當氣體處于平衡態(tài)時,氣體分子速率分布函數(shù)為:麥克斯韋速率分布曲線速率在v~v+Δv間的分子數(shù):麥克斯韋速率分布曲線討論:1.窄條矩形面積:物理意義:

在該速率間隔內(nèi)的分子數(shù)占總分子數(shù)的百分比,同時代表了一個分子的速率處在該速率小間隔內(nèi)的幾率。2.曲邊梯形(v1~v2)的面積:3.曲邊下(0~∞)的總面積:——歸一化條件4.最概然速率vp與f(v)的最大值對應(yīng)的速率物理意義:

若把整個速率區(qū)間分成許多相等的小間隔,則vp

所在的那個間隔所對應(yīng)的分子數(shù)所占總分子數(shù)的百分比最高,或者說一個分子的速率處在該速率小間隔的幾率最大。注意:1)麥克斯韋速率分布律只適用于平衡態(tài)下的理想氣體。2)麥克斯韋速率分布律是統(tǒng)計規(guī)律,只適用于大量分子的整體,ΔN亦為物理無窮小。麥克斯韋速率分布曲線5.溫度T和分子質(zhì)量m對速率分布曲線的影響三、三種統(tǒng)計速率(p183例5-5)1.最概然速率:vp令麥克斯韋速率分布曲線(討論分子的速率分布)2.平均速率:3.方均根速率:(計算分子的平均平動動能)(計算分子運動的平均距離)討論:1)三者均正比于,反比于或2)在室溫下,三者的數(shù)量級為102

m/s,且例5-6:同一溫度下的氫氣和氧氣的速率分布曲線如圖所示。①其中曲線1為_____________的速率分布曲線,__________的最概然速率較大(填“氫氣”或“氧氣”)。②若圖中曲線表示同一種氣體不同溫度時的速率分布曲線,溫度分別為T1和T2且T1<T2;則曲線1代表溫度為________的分布曲線(填T1或T2)。氧氣氫氣T1§5-6麥克斯韋—玻耳茲曼分布律一、重力場中分子按高度的分布即討論:1)m0越大,重力作用越強,粒子隨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論