版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ComputerControlSystemDesign-2PresentedBy:MJunaidKhan
AssociateProfessor,Dept.ofElectronicandPowerEngineeringcontactjunaidationalUniversityofScienceandTechnologyPakistan1ContentsReviewoflastlectureDesignbyEmulation-IndirectDesignMethodMethodstoDiscretizeContinuousControllerForwardRectangularRuleBackwardRectangularRuleTrapezoidalRuleBilinearORTustin’sTransformationZOHEquivalent–StepInvarianceMethodPoleZeroMapping–MatchedPoleZeroMappingBilinearTransformationwithFrequencyPre-warpingAnalyzingPerformanceofDiscreteSystemNumericalIntegrationMethods2Review-
TwoWaystoDesignaDigitalControllerIndirectDesign:
Firstdesignacontinuous
time
controllerandthendiscretizeit usingsomediscretization
techniquetoobtainanequivalent digitalcontroller.DirectDesign:
Discretizetheplantfirsttoobtainadiscrete-timesystemand thenapplydigital
controlsystemdesigntechniquesIndirectDesignDirectDesign3Review-
StrategyofIndirectDesignHavingacontinuoustransferfunctionD(s),findthebestdiscreteequivalentD(z)usinganysuitablemethodofconversion.Judgetheeffectivenessofthedigitaldesignbycomparingit’sfrequencyresponsewiththatofD(s)SelectedsamplingfrequencyiskepthigherthanfrequencyoftheinputsignalsForinputsignalswhichareathighfrequencyi.e.approachingtheNyquistrate(fs/2)orfoldingfrequency,thefidelityofD(z)comparedwithD(s)willdeteriorate.Thismeansthat:
ifthesamplingfrequency‘fs’islessthandoubleofsignalfrequency,theperformanceofD(z)willbebad.4Review-
DiscreteApproximationsForwardRectangularRule:
Itissimpletoapply,butastablesystemcanbecomeunstable,soitisimpracticaltousethisapproximation.BackwardRectangularRule
:Astablesystemwillresultinastablesystem,buttherearelargedistortionsindynamicresponseandfrequencyresponsepropertiesTrapezoidalRule
:Astablesystemwillremainstable,howeveritcancausefrequencydistortionorwarping.Frequencypre-warpingcandecreasethedistortioninfrequencyresponse.5Review-DiscreteApproximations
RemarksForwardRectangularRuleisnotusedinpracticalapplications.BackwardRectangularRulealwaysmapsastablecontinuouscontrollertoastablediscretecontroller.However,someunstablecontinuouscontrollercanalsobetransformedintostablediscretecontrollersThebilineartransformation(trapezoidalorTustin’sapproximation)mapsthelefthalfsplaneintotheunitdisc.Hence,stablecontinuouscontrollersareapproximatedbystablediscretecontrollersandunstablecontinuouscontrollersaremappedtounstablediscretecontrollersInpractice,theTustin’sapproximation(bilineartransformation)istheapproximationofchoiceforconvertingcontinuous-timecontrollerstodiscrete-timecontrollers.Infact,somecomputer-aidedprograms(e.g.MATLAB)don’tevenhavetheoptiontoapproximatewithforwardorbackwarddifferencemethods6IndirectdesignmethodStrategies:1.EmulationbyZOHEquivalent-Step-invariancemethod
Thismethodsimplyassumesthatthesignalenteringthemicroprocessorisconstantoverthesamplingtime(thefunctionoftheZOHDAContheoutputsignal)7Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodConvertD(s)to(D(z)(suitableforimplementationonamicroprocessor)basedonasamplingtimeof0.1secondbyZOHmethod.Example…8Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodRemarks:
1.Astablesystemwillremainstable2.Frequencyfoldingphenomenamayoccur,butthankstothelow-passcharacteristicsoftheZOH,itisalittlebetter.3.Complexcomputationforlarge-scalesystems4.Steady-statevalueisinvariant,i.e., G(s)|s=0=H(z)|z=19Indirectdesignmethod2.PoleandZeroMappingSinceeverypoleandzeroofD(s)inthes-planehasitsequivalentpositioninthez-planethroughthemapping:thenitsseemsreasonabletoformD(z)fromD(s)bymappingthepositionsofthepolesandzeroesinterms's'topositionsinthez-planeusingequationsabove.AsimpleexamplewilldemonstratetheMethod.IfThenthepositionsofthefinitepolesandzeroesofD(s)are:10Indirectdesignmethod2.PoleandZeroMappingUsingthemapping,thesemaptopositionsinthes-planegivenby:ThusD(z)isgivenby:ThevalueofK'isselectedtoensurethegainofD(s)andD(z)arethesameatsomespecificfrequency,usuallyzerofrequency(DCgain).TheDCgaininthes-planeisdeterminedwhens=0andinthez-planewhenz=111IndirectdesignmethodPoleandZeroMappingThusforequalDCgain:Andthustheequivalenttransferfunctionisgivenby:12IndirectdesignmethodThisisapopularmethodandhasavalidrational,andfortransferfunctionswithasmanyzeroesaspolesinD(s)itisareasonableapproach.Howeverinmanycontrollertransferfunctionsthisisnotthecase.Forexamplethetransferfunction:Ithastwopoless=0andbandtwozeroess=aand∞.Thedifficultyismappingthesat∞.Somedesignersplaceitatz=0andsomeatz=-1whichbecauseofthenatureofthez-plane(duetothepeculiarnatureofthemappingequations)arebothreasonabledecisions.However,thisisnotverysatisfactoryandevenwithoutthisproblemthemethoddoesnotalwaysworkPoleandZeroMapping13IndirectdesignmethodExample2…Obtainanexpressionforthecontrollerindiscreteformusingthepole/zeromappingmethod.Expressyouranswersinrecursiveformsuitableforimplementationonamicroprocessor.PoleandZeroMapping14IndirectdesignmethodTheBilinearorTustin'sTransformationInsteadofassumingtheinputsignalisheldconstantbetweensamples(theZOHmethod),thismethodassumesthattheprocessismoreaccurateifastraightlinebetweensuccessivesamplesoftheinputisconsidered(sameasinTrapezoidalMethod)andisabetterapproximationtowhatishappeningbetweensamplesasshownbelow:15IndirectdesignmethodTheBilinearorTustin'sTransformationTustinsuggestedthatforthesampledsystemtheprocessofsignalintegrationcanbeapproximatedby:Intheaboveyrepresenttheintegralofx.Takingthez-transformoftheaboveandre-arrangingintotransferfunctionformgives:16IndirectdesignmethodTheBilinearorTustin'sTransformationIntegrationincontinuoussystemsisrepresentedbytheLaplacetransferfunction1/s
,hencethemappingfromthes-domaintothez-domainisapproximatedby:yrepresenttheintegralofx.Takingthez-transformoftheaboveandRe-arrangingintotransferfunctionformgives:17IndirectdesignmethodTheBilinearorTustin'sTransformationThisEquationisTustin'smappingandtheideaisthateverywheresappearsinD(s),theequationissubstitutedforit.18Indirectdesignmethod
Designexample:19Indirectdesignmethod
Designexample:20Indirectdesignmethod
Designexample:CalculatingdesiredcontrollerparametersTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,21Indirectdesignmethod
Designexample:VerificationthroughSIMULINKTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,22Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate30timesthebandwidth23Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate6timesthebandwidth24SummaryIndirectDigitalcontrollerdesigncanbeobtainedasfollows: Approximationusingforwardrectangularrule
Approximationusingbackwardrectangularrule
DesignbyEmulationwithZOH
Designthroughpole-zeromapping
DesignUsingBilinearTransformationThemethodoftransformationplaysasignificantroleintheperformanceoftheobtaineddigitalsystemChoiceofsamplingtime/frequencyplaysamajorroleintheperformanceoftheobtaineddigitalsystem25Indirectdesignmethod
FrequencyWarpinginBilinearTransformationNotethattheentire
axismapsintoonecompleterevolutionoftheunitcircle.
(mapsaxisintoinfinitenumberofrevolutionsoftheunitcircle)Bilinearand
transformationshaveconsiderabledifferencesbetweenthemintheirtransientandfrequencyresponsecharacteristics.26Indirectdesignmethod
FrequencyWarping-DefinitionFrequencywarpingtransformationisaprocesswhereonespectralrepresentationonacertainfrequencyscale(e.g.,z,s-domain)andwithacertainfrequencyresolution(mostoftenuniform)istransformedtoanotherrepresentationonanewfrequencyscale.Thenewrepresentationhasauniformfrequencyresolutiononthenewscale-however,ithasanon-uniformresolutionwhenobservedfromtheoldscale.Thewarpingfunctiondefineshowindividualfrequencycomponentsanddifferentfrequencyrangesaremappedonthenewscale.Italsodefineshowtheresolutionofthenewrepresentationisallocated,i.e.whichrangesintheoriginalrepresentationarecompressed(shrinked,resolutionreduced)andwhichexpanded(stretched,resolutionincreased).27Indirectdesignmethod
FrequencyWarpingFrequencyWarping
Itiseasytocheckthatthebilineartransformgivesaone-to-one,order-preserving,conformalmapbetweentheanalogfrequencyaxis
andthe
digitalfrequencyaxis
,where
isthesamplinginterval.Therefore,theamplituderesponsetakesonexactlythesamevaluesoverbothaxes,withtheonlydefectbeingafrequencywarpingsuchthatequalincrementsalongtheunitcircleinthe
planecorrespondtolargerandlarger
bandwidthsalongthe
axisinthe
plane.Somekindoffrequencywarpingisobviouslyunavoidableinanyone-to-onemapbecausetheanalogfrequencyaxisisinfinitewhilethedigitalfrequencyaxisisfinite.Therelationbetweentheanaloganddigitalfrequencyaxesmaybederivedimmediately28Indirectdesignmethod
FrequencyWarpingForFrequencypre-warping,thecontinuoustimefilterisUsingbilinear/Tustintransformation,transferfunctioninz-domainisSetComparingfrequencyresponsesThisshowsthefrequencydistortionorwarping29NowifisverysmallAndifTheresponsesareequalwhenalsocalledpre-warpingequalityIndirectdesignmethod
FrequencyWarping30Indirectdesignmethod
FrequencyPre-WarpingProcedureforpre-warping1.
Warpthefrequencyscalebeforetransforming2.
TransformusingBilinear31Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationPre-warpinggivesThefrequencyfunctionofisgivenby:32Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationwithpre-warpingThefrequencyfunctionAt:Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality33Indirectdesignmethod
FrequencyPre-WarpingRemarks1.Thepre-warpingequalityisgivenby3.Thechoiceofpre-warpingfrequencydependsonthemappedfilter4.Incontrolapplications,asuitablechoiceofisthe3-dBfrequencyforaPIorPDcontrollerandtheupper3-dBfrequencyforaPIDcontroller5.InMATLAB,thebilineartransformationisaccomplishedusingthefollowingcommand>>Gd=c2d(Gc,T,‘tustin’)6.Ifpre-warpingisrequestedatafrequencyw,thenthecommandis:>>Gd=c2d(Gc,T,‘prewarp’,w)2.Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality34EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersfor
ForwardRectangularRule
NotrecommendedBackwardRectangularRuleTrapezoidalRuleBilinear/Tustin35EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersforBilinear/TustinBilinearwithfrequencyprewarpingZOHEquivalentorStepInvarianceMatchedPoleZeroMappingApole/zeroats=-aismappedtoAninfinitepole/zeroismappedtoz=-1
36Example1:bode(1,[11])holdondbode([11],[3-1],1)Indirectdesignmethod37Example2:sys_c=tf([119],[129]);s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電商平臺(tái)會(huì)員服務(wù)與分成合同4篇
- 二零二五年度新能源汽車質(zhì)押借款電子合同樣本4篇
- 二零二五版農(nóng)機(jī)保險(xiǎn)代理銷售合同6篇
- 2025年度民辦學(xué)校教師繼續(xù)教育與進(jìn)修合同4篇
- 二零二五年度大型企業(yè)集團(tuán)內(nèi)部招聘240名管理崗位合同4篇
- oem合同范本共(2024版)
- 2025年度代辦廣告發(fā)布許可合同范本4篇
- 2025年內(nèi)河水路運(yùn)輸船舶及貨物安全保障服務(wù)合同4篇
- 二零二五年度棗樹種植技術(shù)培訓(xùn)與推廣服務(wù)合同4篇
- 2025年度公共場(chǎng)所消毒承包服務(wù)合同范本4篇
- 小學(xué)網(wǎng)管的工作總結(jié)
- 2024年銀行考試-興業(yè)銀行筆試參考題庫含答案
- 泵站運(yùn)行管理現(xiàn)狀改善措施
- 2024屆武漢市部分學(xué)校中考一模數(shù)學(xué)試題含解析
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 第19章 一次函數(shù) 單元整體教學(xué)設(shè)計(jì) 【 學(xué)情分析指導(dǎo) 】 人教版八年級(jí)數(shù)學(xué)下冊(cè)
- 浙教版七年級(jí)下冊(cè)科學(xué)全冊(cè)課件
- 弧度制及弧度制與角度制的換算
- 瓦楞紙箱計(jì)算公式測(cè)量方法
- DB32-T 4004-2021水質(zhì) 17種全氟化合物的測(cè)定 高效液相色譜串聯(lián)質(zhì)譜法-(高清現(xiàn)行)
- DB15T 2724-2022 羊糞污收集處理技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論