版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ComputerControlSystemDesign-2PresentedBy:MJunaidKhan
AssociateProfessor,Dept.ofElectronicandPowerEngineeringcontactjunaidationalUniversityofScienceandTechnologyPakistan1ContentsReviewoflastlectureDesignbyEmulation-IndirectDesignMethodMethodstoDiscretizeContinuousControllerForwardRectangularRuleBackwardRectangularRuleTrapezoidalRuleBilinearORTustin’sTransformationZOHEquivalent–StepInvarianceMethodPoleZeroMapping–MatchedPoleZeroMappingBilinearTransformationwithFrequencyPre-warpingAnalyzingPerformanceofDiscreteSystemNumericalIntegrationMethods2Review-
TwoWaystoDesignaDigitalControllerIndirectDesign:
Firstdesignacontinuous
time
controllerandthendiscretizeit usingsomediscretization
techniquetoobtainanequivalent digitalcontroller.DirectDesign:
Discretizetheplantfirsttoobtainadiscrete-timesystemand thenapplydigital
controlsystemdesigntechniquesIndirectDesignDirectDesign3Review-
StrategyofIndirectDesignHavingacontinuoustransferfunctionD(s),findthebestdiscreteequivalentD(z)usinganysuitablemethodofconversion.Judgetheeffectivenessofthedigitaldesignbycomparingit’sfrequencyresponsewiththatofD(s)SelectedsamplingfrequencyiskepthigherthanfrequencyoftheinputsignalsForinputsignalswhichareathighfrequencyi.e.approachingtheNyquistrate(fs/2)orfoldingfrequency,thefidelityofD(z)comparedwithD(s)willdeteriorate.Thismeansthat:
ifthesamplingfrequency‘fs’islessthandoubleofsignalfrequency,theperformanceofD(z)willbebad.4Review-
DiscreteApproximationsForwardRectangularRule:
Itissimpletoapply,butastablesystemcanbecomeunstable,soitisimpracticaltousethisapproximation.BackwardRectangularRule
:Astablesystemwillresultinastablesystem,buttherearelargedistortionsindynamicresponseandfrequencyresponsepropertiesTrapezoidalRule
:Astablesystemwillremainstable,howeveritcancausefrequencydistortionorwarping.Frequencypre-warpingcandecreasethedistortioninfrequencyresponse.5Review-DiscreteApproximations
RemarksForwardRectangularRuleisnotusedinpracticalapplications.BackwardRectangularRulealwaysmapsastablecontinuouscontrollertoastablediscretecontroller.However,someunstablecontinuouscontrollercanalsobetransformedintostablediscretecontrollersThebilineartransformation(trapezoidalorTustin’sapproximation)mapsthelefthalfsplaneintotheunitdisc.Hence,stablecontinuouscontrollersareapproximatedbystablediscretecontrollersandunstablecontinuouscontrollersaremappedtounstablediscretecontrollersInpractice,theTustin’sapproximation(bilineartransformation)istheapproximationofchoiceforconvertingcontinuous-timecontrollerstodiscrete-timecontrollers.Infact,somecomputer-aidedprograms(e.g.MATLAB)don’tevenhavetheoptiontoapproximatewithforwardorbackwarddifferencemethods6IndirectdesignmethodStrategies:1.EmulationbyZOHEquivalent-Step-invariancemethod
Thismethodsimplyassumesthatthesignalenteringthemicroprocessorisconstantoverthesamplingtime(thefunctionoftheZOHDAContheoutputsignal)7Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodConvertD(s)to(D(z)(suitableforimplementationonamicroprocessor)basedonasamplingtimeof0.1secondbyZOHmethod.Example…8Indirectdesignmethod
ZOHEquivalentorStep-invariancemethodRemarks:
1.Astablesystemwillremainstable2.Frequencyfoldingphenomenamayoccur,butthankstothelow-passcharacteristicsoftheZOH,itisalittlebetter.3.Complexcomputationforlarge-scalesystems4.Steady-statevalueisinvariant,i.e., G(s)|s=0=H(z)|z=19Indirectdesignmethod2.PoleandZeroMappingSinceeverypoleandzeroofD(s)inthes-planehasitsequivalentpositioninthez-planethroughthemapping:thenitsseemsreasonabletoformD(z)fromD(s)bymappingthepositionsofthepolesandzeroesinterms's'topositionsinthez-planeusingequationsabove.AsimpleexamplewilldemonstratetheMethod.IfThenthepositionsofthefinitepolesandzeroesofD(s)are:10Indirectdesignmethod2.PoleandZeroMappingUsingthemapping,thesemaptopositionsinthes-planegivenby:ThusD(z)isgivenby:ThevalueofK'isselectedtoensurethegainofD(s)andD(z)arethesameatsomespecificfrequency,usuallyzerofrequency(DCgain).TheDCgaininthes-planeisdeterminedwhens=0andinthez-planewhenz=111IndirectdesignmethodPoleandZeroMappingThusforequalDCgain:Andthustheequivalenttransferfunctionisgivenby:12IndirectdesignmethodThisisapopularmethodandhasavalidrational,andfortransferfunctionswithasmanyzeroesaspolesinD(s)itisareasonableapproach.Howeverinmanycontrollertransferfunctionsthisisnotthecase.Forexamplethetransferfunction:Ithastwopoless=0andbandtwozeroess=aand∞.Thedifficultyismappingthesat∞.Somedesignersplaceitatz=0andsomeatz=-1whichbecauseofthenatureofthez-plane(duetothepeculiarnatureofthemappingequations)arebothreasonabledecisions.However,thisisnotverysatisfactoryandevenwithoutthisproblemthemethoddoesnotalwaysworkPoleandZeroMapping13IndirectdesignmethodExample2…Obtainanexpressionforthecontrollerindiscreteformusingthepole/zeromappingmethod.Expressyouranswersinrecursiveformsuitableforimplementationonamicroprocessor.PoleandZeroMapping14IndirectdesignmethodTheBilinearorTustin'sTransformationInsteadofassumingtheinputsignalisheldconstantbetweensamples(theZOHmethod),thismethodassumesthattheprocessismoreaccurateifastraightlinebetweensuccessivesamplesoftheinputisconsidered(sameasinTrapezoidalMethod)andisabetterapproximationtowhatishappeningbetweensamplesasshownbelow:15IndirectdesignmethodTheBilinearorTustin'sTransformationTustinsuggestedthatforthesampledsystemtheprocessofsignalintegrationcanbeapproximatedby:Intheaboveyrepresenttheintegralofx.Takingthez-transformoftheaboveandre-arrangingintotransferfunctionformgives:16IndirectdesignmethodTheBilinearorTustin'sTransformationIntegrationincontinuoussystemsisrepresentedbytheLaplacetransferfunction1/s
,hencethemappingfromthes-domaintothez-domainisapproximatedby:yrepresenttheintegralofx.Takingthez-transformoftheaboveandRe-arrangingintotransferfunctionformgives:17IndirectdesignmethodTheBilinearorTustin'sTransformationThisEquationisTustin'smappingandtheideaisthateverywheresappearsinD(s),theequationissubstitutedforit.18Indirectdesignmethod
Designexample:19Indirectdesignmethod
Designexample:20Indirectdesignmethod
Designexample:CalculatingdesiredcontrollerparametersTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,21Indirectdesignmethod
Designexample:VerificationthroughSIMULINKTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,22Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate30timesthebandwidth23Indirectdesignmethod
Designexample:Digitalcontrollerwithasamplingrate6timesthebandwidth24SummaryIndirectDigitalcontrollerdesigncanbeobtainedasfollows: Approximationusingforwardrectangularrule
Approximationusingbackwardrectangularrule
DesignbyEmulationwithZOH
Designthroughpole-zeromapping
DesignUsingBilinearTransformationThemethodoftransformationplaysasignificantroleintheperformanceoftheobtaineddigitalsystemChoiceofsamplingtime/frequencyplaysamajorroleintheperformanceoftheobtaineddigitalsystem25Indirectdesignmethod
FrequencyWarpinginBilinearTransformationNotethattheentire
axismapsintoonecompleterevolutionoftheunitcircle.
(mapsaxisintoinfinitenumberofrevolutionsoftheunitcircle)Bilinearand
transformationshaveconsiderabledifferencesbetweenthemintheirtransientandfrequencyresponsecharacteristics.26Indirectdesignmethod
FrequencyWarping-DefinitionFrequencywarpingtransformationisaprocesswhereonespectralrepresentationonacertainfrequencyscale(e.g.,z,s-domain)andwithacertainfrequencyresolution(mostoftenuniform)istransformedtoanotherrepresentationonanewfrequencyscale.Thenewrepresentationhasauniformfrequencyresolutiononthenewscale-however,ithasanon-uniformresolutionwhenobservedfromtheoldscale.Thewarpingfunctiondefineshowindividualfrequencycomponentsanddifferentfrequencyrangesaremappedonthenewscale.Italsodefineshowtheresolutionofthenewrepresentationisallocated,i.e.whichrangesintheoriginalrepresentationarecompressed(shrinked,resolutionreduced)andwhichexpanded(stretched,resolutionincreased).27Indirectdesignmethod
FrequencyWarpingFrequencyWarping
Itiseasytocheckthatthebilineartransformgivesaone-to-one,order-preserving,conformalmapbetweentheanalogfrequencyaxis
andthe
digitalfrequencyaxis
,where
isthesamplinginterval.Therefore,theamplituderesponsetakesonexactlythesamevaluesoverbothaxes,withtheonlydefectbeingafrequencywarpingsuchthatequalincrementsalongtheunitcircleinthe
planecorrespondtolargerandlarger
bandwidthsalongthe
axisinthe
plane.Somekindoffrequencywarpingisobviouslyunavoidableinanyone-to-onemapbecausetheanalogfrequencyaxisisinfinitewhilethedigitalfrequencyaxisisfinite.Therelationbetweentheanaloganddigitalfrequencyaxesmaybederivedimmediately28Indirectdesignmethod
FrequencyWarpingForFrequencypre-warping,thecontinuoustimefilterisUsingbilinear/Tustintransformation,transferfunctioninz-domainisSetComparingfrequencyresponsesThisshowsthefrequencydistortionorwarping29NowifisverysmallAndifTheresponsesareequalwhenalsocalledpre-warpingequalityIndirectdesignmethod
FrequencyWarping30Indirectdesignmethod
FrequencyPre-WarpingProcedureforpre-warping1.
Warpthefrequencyscalebeforetransforming2.
TransformusingBilinear31Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationPre-warpinggivesThefrequencyfunctionofisgivenby:32Indirectdesignmethod
FrequencyPre-WarpingExampleAssumethattheintegrator
hastobeimplementedasadigitalfilterUsingBilinearTransformationwithpre-warpingThefrequencyfunctionAt:Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality33Indirectdesignmethod
FrequencyPre-WarpingRemarks1.Thepre-warpingequalityisgivenby3.Thechoiceofpre-warpingfrequencydependsonthemappedfilter4.Incontrolapplications,asuitablechoiceofisthe3-dBfrequencyforaPIorPDcontrollerandtheupper3-dBfrequencyforaPIDcontroller5.InMATLAB,thebilineartransformationisaccomplishedusingthefollowingcommand>>Gd=c2d(Gc,T,‘tustin’)6.Ifpre-warpingisrequestedatafrequencyw,thenthecommandis:>>Gd=c2d(Gc,T,‘prewarp’,w)2.Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality34EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersfor
ForwardRectangularRule
NotrecommendedBackwardRectangularRuleTrapezoidalRuleBilinear/Tustin35EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersforBilinear/TustinBilinearwithfrequencyprewarpingZOHEquivalentorStepInvarianceMatchedPoleZeroMappingApole/zeroats=-aismappedtoAninfinitepole/zeroismappedtoz=-1
36Example1:bode(1,[11])holdondbode([11],[3-1],1)Indirectdesignmethod37Example2:sys_c=tf([119],[129]);s
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級數(shù)學(xué)計算題專項練習(xí)1000題匯編
- 二年級數(shù)學(xué)(上)計算題專項練習(xí)
- 荷花田管護合同(2篇)
- 南京工業(yè)大學(xué)浦江學(xué)院《土木工程施工技術(shù)與組織》2022-2023學(xué)年第一學(xué)期期末試卷
- 林口鎮(zhèn)污水治理工程排水管網(wǎng)工程二期施工組織設(shè)計
- 瑞慶汽車發(fā)動機技術(shù)有限公司聯(lián)合廠房施工組織設(shè)計
- 《醉翁亭記》說課稿
- 《用數(shù)學(xué)》說課稿
- 《我們的夢想》說課稿
- 科室結(jié)對子協(xié)議書(2篇)
- 汽車美容裝潢技術(shù)電子教案 2.2-汽車內(nèi)部清洗護理
- 2023年中國鐵塔招聘筆試真題
- DB11∕T 2103.4-2023 社會單位和重點場所消防安全管理規(guī)范 第4部分:大型商業(yè)綜合體
- 常規(guī)弱電系統(tǒng)施工單價表純勞務(wù)
- 2024年代持法人報酬協(xié)議書模板范本
- 2024年貴州貴陽市信訪局招聘歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 2024年人教版六年級數(shù)學(xué)上冊《第5單元第7課時 扇形的認識》單元整體教學(xué)課件
- 2023湖南文藝出版社五年級音樂下冊全冊教案
- 創(chuàng)作志愿者文化衫
- 國開2024秋《形勢與政策》專題測驗1-5參考答案
- 【PPP項目風(fēng)險評估與控制探究的國內(nèi)外文獻綜述3900字】
評論
0/150
提交評論