江南大學(xué)計算機控制系統(tǒng)巴基斯坦老師課件_第1頁
江南大學(xué)計算機控制系統(tǒng)巴基斯坦老師課件_第2頁
江南大學(xué)計算機控制系統(tǒng)巴基斯坦老師課件_第3頁
江南大學(xué)計算機控制系統(tǒng)巴基斯坦老師課件_第4頁
江南大學(xué)計算機控制系統(tǒng)巴基斯坦老師課件_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ComputerControlSystemDesign-2PresentedBy:MJunaidKhan

AssociateProfessor,Dept.ofElectronicandPowerEngineeringcontactjunaidationalUniversityofScienceandTechnologyPakistan1ContentsReviewoflastlectureDesignbyEmulation-IndirectDesignMethodMethodstoDiscretizeContinuousControllerForwardRectangularRuleBackwardRectangularRuleTrapezoidalRuleBilinearORTustin’sTransformationZOHEquivalent–StepInvarianceMethodPoleZeroMapping–MatchedPoleZeroMappingBilinearTransformationwithFrequencyPre-warpingAnalyzingPerformanceofDiscreteSystemNumericalIntegrationMethods2Review-

TwoWaystoDesignaDigitalControllerIndirectDesign:

Firstdesignacontinuous

time

controllerandthendiscretizeit usingsomediscretization

techniquetoobtainanequivalent digitalcontroller.DirectDesign:

Discretizetheplantfirsttoobtainadiscrete-timesystemand thenapplydigital

controlsystemdesigntechniquesIndirectDesignDirectDesign3Review-

StrategyofIndirectDesignHavingacontinuoustransferfunctionD(s),findthebestdiscreteequivalentD(z)usinganysuitablemethodofconversion.Judgetheeffectivenessofthedigitaldesignbycomparingit’sfrequencyresponsewiththatofD(s)SelectedsamplingfrequencyiskepthigherthanfrequencyoftheinputsignalsForinputsignalswhichareathighfrequencyi.e.approachingtheNyquistrate(fs/2)orfoldingfrequency,thefidelityofD(z)comparedwithD(s)willdeteriorate.Thismeansthat:

ifthesamplingfrequency‘fs’islessthandoubleofsignalfrequency,theperformanceofD(z)willbebad.4Review-

DiscreteApproximationsForwardRectangularRule:

Itissimpletoapply,butastablesystemcanbecomeunstable,soitisimpracticaltousethisapproximation.BackwardRectangularRule

:Astablesystemwillresultinastablesystem,buttherearelargedistortionsindynamicresponseandfrequencyresponsepropertiesTrapezoidalRule

:Astablesystemwillremainstable,howeveritcancausefrequencydistortionorwarping.Frequencypre-warpingcandecreasethedistortioninfrequencyresponse.5Review-DiscreteApproximations

RemarksForwardRectangularRuleisnotusedinpracticalapplications.BackwardRectangularRulealwaysmapsastablecontinuouscontrollertoastablediscretecontroller.However,someunstablecontinuouscontrollercanalsobetransformedintostablediscretecontrollersThebilineartransformation(trapezoidalorTustin’sapproximation)mapsthelefthalfsplaneintotheunitdisc.Hence,stablecontinuouscontrollersareapproximatedbystablediscretecontrollersandunstablecontinuouscontrollersaremappedtounstablediscretecontrollersInpractice,theTustin’sapproximation(bilineartransformation)istheapproximationofchoiceforconvertingcontinuous-timecontrollerstodiscrete-timecontrollers.Infact,somecomputer-aidedprograms(e.g.MATLAB)don’tevenhavetheoptiontoapproximatewithforwardorbackwarddifferencemethods6IndirectdesignmethodStrategies:1.EmulationbyZOHEquivalent-Step-invariancemethod

Thismethodsimplyassumesthatthesignalenteringthemicroprocessorisconstantoverthesamplingtime(thefunctionoftheZOHDAContheoutputsignal)7Indirectdesignmethod

ZOHEquivalentorStep-invariancemethodConvertD(s)to(D(z)(suitableforimplementationonamicroprocessor)basedonasamplingtimeof0.1secondbyZOHmethod.Example…8Indirectdesignmethod

ZOHEquivalentorStep-invariancemethodRemarks:

1.Astablesystemwillremainstable2.Frequencyfoldingphenomenamayoccur,butthankstothelow-passcharacteristicsoftheZOH,itisalittlebetter.3.Complexcomputationforlarge-scalesystems4.Steady-statevalueisinvariant,i.e., G(s)|s=0=H(z)|z=19Indirectdesignmethod2.PoleandZeroMappingSinceeverypoleandzeroofD(s)inthes-planehasitsequivalentpositioninthez-planethroughthemapping:thenitsseemsreasonabletoformD(z)fromD(s)bymappingthepositionsofthepolesandzeroesinterms's'topositionsinthez-planeusingequationsabove.AsimpleexamplewilldemonstratetheMethod.IfThenthepositionsofthefinitepolesandzeroesofD(s)are:10Indirectdesignmethod2.PoleandZeroMappingUsingthemapping,thesemaptopositionsinthes-planegivenby:ThusD(z)isgivenby:ThevalueofK'isselectedtoensurethegainofD(s)andD(z)arethesameatsomespecificfrequency,usuallyzerofrequency(DCgain).TheDCgaininthes-planeisdeterminedwhens=0andinthez-planewhenz=111IndirectdesignmethodPoleandZeroMappingThusforequalDCgain:Andthustheequivalenttransferfunctionisgivenby:12IndirectdesignmethodThisisapopularmethodandhasavalidrational,andfortransferfunctionswithasmanyzeroesaspolesinD(s)itisareasonableapproach.Howeverinmanycontrollertransferfunctionsthisisnotthecase.Forexamplethetransferfunction:Ithastwopoless=0andbandtwozeroess=aand∞.Thedifficultyismappingthesat∞.Somedesignersplaceitatz=0andsomeatz=-1whichbecauseofthenatureofthez-plane(duetothepeculiarnatureofthemappingequations)arebothreasonabledecisions.However,thisisnotverysatisfactoryandevenwithoutthisproblemthemethoddoesnotalwaysworkPoleandZeroMapping13IndirectdesignmethodExample2…Obtainanexpressionforthecontrollerindiscreteformusingthepole/zeromappingmethod.Expressyouranswersinrecursiveformsuitableforimplementationonamicroprocessor.PoleandZeroMapping14IndirectdesignmethodTheBilinearorTustin'sTransformationInsteadofassumingtheinputsignalisheldconstantbetweensamples(theZOHmethod),thismethodassumesthattheprocessismoreaccurateifastraightlinebetweensuccessivesamplesoftheinputisconsidered(sameasinTrapezoidalMethod)andisabetterapproximationtowhatishappeningbetweensamplesasshownbelow:15IndirectdesignmethodTheBilinearorTustin'sTransformationTustinsuggestedthatforthesampledsystemtheprocessofsignalintegrationcanbeapproximatedby:Intheaboveyrepresenttheintegralofx.Takingthez-transformoftheaboveandre-arrangingintotransferfunctionformgives:16IndirectdesignmethodTheBilinearorTustin'sTransformationIntegrationincontinuoussystemsisrepresentedbytheLaplacetransferfunction1/s

,hencethemappingfromthes-domaintothez-domainisapproximatedby:yrepresenttheintegralofx.Takingthez-transformoftheaboveandRe-arrangingintotransferfunctionformgives:17IndirectdesignmethodTheBilinearorTustin'sTransformationThisEquationisTustin'smappingandtheideaisthateverywheresappearsinD(s),theequationissubstitutedforit.18Indirectdesignmethod

Designexample:19Indirectdesignmethod

Designexample:20Indirectdesignmethod

Designexample:CalculatingdesiredcontrollerparametersTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,21Indirectdesignmethod

Designexample:VerificationthroughSIMULINKTheclosed-looptransferfunctionofthecruisecontrolsystemwiththePIcontrollaw,i.e.,22Indirectdesignmethod

Designexample:Digitalcontrollerwithasamplingrate30timesthebandwidth23Indirectdesignmethod

Designexample:Digitalcontrollerwithasamplingrate6timesthebandwidth24SummaryIndirectDigitalcontrollerdesigncanbeobtainedasfollows: Approximationusingforwardrectangularrule

Approximationusingbackwardrectangularrule

DesignbyEmulationwithZOH

Designthroughpole-zeromapping

DesignUsingBilinearTransformationThemethodoftransformationplaysasignificantroleintheperformanceoftheobtaineddigitalsystemChoiceofsamplingtime/frequencyplaysamajorroleintheperformanceoftheobtaineddigitalsystem25Indirectdesignmethod

FrequencyWarpinginBilinearTransformationNotethattheentire

axismapsintoonecompleterevolutionoftheunitcircle.

(mapsaxisintoinfinitenumberofrevolutionsoftheunitcircle)Bilinearand

transformationshaveconsiderabledifferencesbetweenthemintheirtransientandfrequencyresponsecharacteristics.26Indirectdesignmethod

FrequencyWarping-DefinitionFrequencywarpingtransformationisaprocesswhereonespectralrepresentationonacertainfrequencyscale(e.g.,z,s-domain)andwithacertainfrequencyresolution(mostoftenuniform)istransformedtoanotherrepresentationonanewfrequencyscale.Thenewrepresentationhasauniformfrequencyresolutiononthenewscale-however,ithasanon-uniformresolutionwhenobservedfromtheoldscale.Thewarpingfunctiondefineshowindividualfrequencycomponentsanddifferentfrequencyrangesaremappedonthenewscale.Italsodefineshowtheresolutionofthenewrepresentationisallocated,i.e.whichrangesintheoriginalrepresentationarecompressed(shrinked,resolutionreduced)andwhichexpanded(stretched,resolutionincreased).27Indirectdesignmethod

FrequencyWarpingFrequencyWarping

Itiseasytocheckthatthebilineartransformgivesaone-to-one,order-preserving,conformalmapbetweentheanalogfrequencyaxis

andthe

digitalfrequencyaxis

,where

isthesamplinginterval.Therefore,theamplituderesponsetakesonexactlythesamevaluesoverbothaxes,withtheonlydefectbeingafrequencywarpingsuchthatequalincrementsalongtheunitcircleinthe

planecorrespondtolargerandlarger

bandwidthsalongthe

axisinthe

plane.Somekindoffrequencywarpingisobviouslyunavoidableinanyone-to-onemapbecausetheanalogfrequencyaxisisinfinitewhilethedigitalfrequencyaxisisfinite.Therelationbetweentheanaloganddigitalfrequencyaxesmaybederivedimmediately28Indirectdesignmethod

FrequencyWarpingForFrequencypre-warping,thecontinuoustimefilterisUsingbilinear/Tustintransformation,transferfunctioninz-domainisSetComparingfrequencyresponsesThisshowsthefrequencydistortionorwarping29NowifisverysmallAndifTheresponsesareequalwhenalsocalledpre-warpingequalityIndirectdesignmethod

FrequencyWarping30Indirectdesignmethod

FrequencyPre-WarpingProcedureforpre-warping1.

Warpthefrequencyscalebeforetransforming2.

TransformusingBilinear31Indirectdesignmethod

FrequencyPre-WarpingExampleAssumethattheintegrator

hastobeimplementedasadigitalfilterUsingBilinearTransformationPre-warpinggivesThefrequencyfunctionofisgivenby:32Indirectdesignmethod

FrequencyPre-WarpingExampleAssumethattheintegrator

hastobeimplementedasadigitalfilterUsingBilinearTransformationwithpre-warpingThefrequencyfunctionAt:Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality33Indirectdesignmethod

FrequencyPre-WarpingRemarks1.Thepre-warpingequalityisgivenby3.Thechoiceofpre-warpingfrequencydependsonthemappedfilter4.Incontrolapplications,asuitablechoiceofisthe3-dBfrequencyforaPIorPDcontrollerandtheupper3-dBfrequencyforaPIDcontroller5.InMATLAB,thebilineartransformationisaccomplishedusingthefollowingcommand>>Gd=c2d(Gc,T,‘tustin’)6.Ifpre-warpingisrequestedatafrequencyw,thenthecommandis:>>Gd=c2d(Gc,T,‘prewarp’,w)2.Thedistortioninthefrequencyresponsecanbecorrectedatasinglefrequencyusingthepre-warpingequality34EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersfor

ForwardRectangularRule

NotrecommendedBackwardRectangularRuleTrapezoidalRuleBilinear/Tustin35EquivalentDiscreteTimeFiltersforaContinuousTimeFilterMappingMethodMappingEquationEquivalentDiscreteTimeFiltersforBilinear/TustinBilinearwithfrequencyprewarpingZOHEquivalentorStepInvarianceMatchedPoleZeroMappingApole/zeroats=-aismappedtoAninfinitepole/zeroismappedtoz=-1

36Example1:bode(1,[11])holdondbode([11],[3-1],1)Indirectdesignmethod37Example2:sys_c=tf([119],[129]);s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論