版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i2.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.3.已知集合,集合,那么等于()A. B. C. D.4.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.5.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時(shí)籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計(jì)算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.6.設(shè),則(
)A.10 B.11 C.12 D.137.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.8.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.9.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.10.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.11.已知斜率為k的直線l與拋物線交于A,B兩點(diǎn),線段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.12.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),且由的最大值是_________14.如圖,在長方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.15.若,則的最小值是______.16.已知不等式的解集不是空集,則實(shí)數(shù)的取值范圍是;若不等式對任意實(shí)數(shù)恒成立,則實(shí)數(shù)的取值范圍是___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.18.(12分)第十三屆全國人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考19.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.20.(12分)如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.21.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.22.(10分)甲、乙兩班各派三名同學(xué)參加知識(shí)競賽,每人回答一個(gè)問題,答對得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.2.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.3.A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.4.D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.5.C【解析】
根據(jù)程序框圖依次計(jì)算得到答案.【詳解】,;,;,;,;,此時(shí)不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【點(diǎn)睛】本題考查了程序框圖的計(jì)算,意在考查學(xué)生的理解能力和計(jì)算能力.6.B【解析】
根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.7.C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.8.C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.9.A【解析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.10.B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).11.C【解析】
設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.12.B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切?,所?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【點(diǎn)睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實(shí)數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過點(diǎn)或點(diǎn)時(shí)取最小值,可得所以的最大值是【點(diǎn)睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達(dá)式進(jìn)行化簡,然后求出最值問題,本題有一定難度。14.【解析】
如圖,連接,證明平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.當(dāng)時(shí).線段的長度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€平面EFG,所以點(diǎn)P在直線AC上.在中,,故當(dāng)時(shí).線段的長度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識(shí)的理解掌握水平.15.8【解析】
根據(jù),利用基本不等式可求得函數(shù)最值.【詳解】,,當(dāng)且僅當(dāng)且,即時(shí),等號(hào)成立.時(shí),取得最小值.故答案為:【點(diǎn)睛】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.16.【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時(shí)滿足題意,解得或所以答案為【點(diǎn)睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時(shí)的分類討論化簡三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進(jìn)而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長度,建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點(diǎn),又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長度,建立如圖的空間直角坐標(biāo)系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點(diǎn)睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時(shí)先證明三條兩兩垂直的直線,屬于中檔題.18.(1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)因?yàn)榈挠^測值,所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運(yùn)算求解能力.19.(1)見解析(2)【解析】
(1)設(shè)的中點(diǎn)為,連接.由展開圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關(guān)鍵,難度一般.20.(1)見解析;(2)【解析】
(1)先證明四邊形是菱形,進(jìn)而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.以O(shè)為坐標(biāo)原點(diǎn),以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進(jìn)而可求出二面角的正弦值.【詳解】(1)證明:因?yàn)辄c(diǎn)為的中點(diǎn),,所以,因?yàn)?所以,所以四邊形是平行四邊形,因?yàn)?所以平行四邊形是菱形,所以,因?yàn)槠矫嫫矫?且平面平面,所以平面.因?yàn)槠矫?所以平面平面.(2)記AC,BE的交點(diǎn)為O,再取FG的中點(diǎn)P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)數(shù)學(xué)第二學(xué)期滬教版-期末試卷(滬版)
- 一年級(jí)數(shù)學(xué)第一學(xué)期滬教版- 期末試卷 3
- 生活安全 課件
- 2024年湖北省中考數(shù)學(xué)真題卷及答案解析
- 課件 頁面大小
- 西京學(xué)院《網(wǎng)絡(luò)數(shù)據(jù)庫》2022-2023學(xué)年期末試卷
- 西京學(xué)院《建筑信息模型》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《機(jī)械原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《高等混凝土結(jié)構(gòu)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《單片機(jī)原理及應(yīng)用實(shí)驗(yàn)》2021-2022學(xué)年期末試卷
- 2024年安全生產(chǎn)知識(shí)競賽考試題庫及答案(共五套)
- 22《鳥的天堂》課件
- 農(nóng)業(yè)灌溉裝置市場環(huán)境與對策分析
- 新疆烏魯木齊市第十一中學(xué)2024-2025學(xué)年八年級(jí)上學(xué)期期中道德與法治試卷
- 2024年江西省高考地理真題(原卷版)
- 部編版小學(xué)五年級(jí)上冊道法課程綱要(知識(shí)清單)
- 經(jīng)濟(jì)法學(xué)-計(jì)分作業(yè)一(第1-4章權(quán)重25%)-國開-參考資料
- 山東省臨沂市(2024年-2025年小學(xué)四年級(jí)語文)人教版期中考試(上學(xué)期)試卷及答案
- 護(hù)士2024思想?yún)R報(bào)5篇
- Unit+10+Lesson+1+How+Closely+Connected+Are+We 高中英語北師大版(2019)選擇性必修第四冊
- ω-3脂肪酸處方藥物在老年疾病中的應(yīng)用專家共識(shí)(2024版)解讀
評(píng)論
0/150
提交評(píng)論