2023年電容觸摸屏控制設(shè)計(jì)外文文獻(xiàn)及中文翻譯_第1頁
2023年電容觸摸屏控制設(shè)計(jì)外文文獻(xiàn)及中文翻譯_第2頁
2023年電容觸摸屏控制設(shè)計(jì)外文文獻(xiàn)及中文翻譯_第3頁
2023年電容觸摸屏控制設(shè)計(jì)外文文獻(xiàn)及中文翻譯_第4頁
2023年電容觸摸屏控制設(shè)計(jì)外文文獻(xiàn)及中文翻譯_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ALow-Cost,SmartCapacitivePositionSensorAbstractAnewhigh-performance,low-cost,capacitiveposition-measuringsystemisdescribed.Byusingahighlylinearoscillator,shieldingandat(yī)hree-signalapproach,mostofthee(cuò)rrorsareeliminated.Theaccuracyamountsto1μmovera1mmrange.Sincetheoutputoftheoscillat(yī)orcandirectlybeconnectedtoamicrocontroller,anA/Dconverterisnotneeded.I.INTRODUCTIONThispaperdescribesanovelhigh-performance,low-cost,capacitivedisplacementmeasuringsystemfeaturing:1mmmeasuringrange,1μmaccuracy,0.1stotalmeasuringtime.Translatedtothecapacitivedomain,thespecificationscorrespondto:apossiblerangeof1pF;only50fFofthisrangeisusedforthedisplacementtransducer;50aFabsolutecapacitance-measuringinaccuracy.MeijerandSchrier[l]andmorerecentlyVanDrecht,Meijer,andDeJong[2]haveproposedadisplacement-measuringsystem,usingaPSD(PositionSensitiveDetector)assensingelement.SomedisadvantagesofusingaPSDarethehighercostsandthehigherpowerconsumptionofthePSDandLED(Light-EmittingDiode)ascomparedtothecapacitivesensorelementsdescribedinthispaper.Thesignalprocessorusestheconceptspresentedin[2],butisadoptedfortheuseofcapacitiveelements.Bythee(cuò)xtensiveuseofshielding,guardingandsmartA/Dconversion,thesystemisabletocombineahighaccuracywithaverylowcost-price.Thetransducerproducesthree-period-modulat(yī)edsignalswhichcanbeselectedanddirectlyreadoutbyamicrocontroller.Themicrocontroller,inreturn,calculatesthedisplacementandcansendthisvaluetoahostcomputer(Fig.1)oradisplayordriveanactuator.ElectronicCircuitElectronicCircuitPersonalComputer ActuatorDisplayFig.1.BlockdiagramofthesystemFig.2.PerspectiveanddimensionsoftheelectrodestructureⅡ.THEELECTRODESTRUCTUREThebasicsensingelementconsistsoftwosimpleelectrodeswithcapacitanceCx,(Fig.2).Thesmallerone(E2)issurroundedbyaguardelectrode.Thankstotheuseoftheguardelectrode,thecapacitanceCxbetweenthetwoelectrodesisindependentofmovements(lateraldisplacementsaswellasrotations)paralleltotheelectrodesurface.TheinfluenceoftheparasiticcapacitancesCpwillbeeliminatedaswillbediscussedinSectionⅢ.AccordingtoHeerens[3],therelativedeviationinthecapacitanceCxbetweenthetwoelectrodescausedbythefiniteguardelectrodesizeissmallerthan:δ<e-π(x/d)(1)wherexisthewidthoftheguardanddthedistancebetweentheelectrodes.Thisdeviationintroducesanonlinearity.Thereforewerequirethatδislessthan100ppm.Alsothegapbetweenthesmallelectrodeandthesurroundingguardcausesadeviation:δ<e-π(d/s)(2)withsthewidthofthegap.Thisdeviationisnegligiblecomparedto(l),whenthegapwidthislessthan1/3ofthedistancebetweentheelectrodes.Anothercauseoferrorsoriginatesfromapossiblefiniteskewangleαbetweenthetwoelectrodes(Fig.3).Assumingthefollowingconditions:thepotentialsonthesmallelectrodeandtheguardelectrodeareequalto0V,thepotentialonthelargee(cuò)lectrodeisequaltoVvolt,theguardelectrodeislargeenough,itcanbeseenthat(yī)theelectricfieldwillbeconcentric.ddl/2l/2Fig.3.Electrodeswithangleα.Tokeepthecalculationssimple,wewillassumetheelectrodestobeinfinitelylargeinonedirection.Nowtheproblemisatwo-dimensionalonethatcanbesolvedbyusingpolar-coordinates(r,φ).Inthiscasetheelectricalfieldcanbedescribedby:(3)Tocalculatethechargeonthesmallelectrode,wesetφto0andintegrateoverr:(4)withBltheleftborderofthesmallelectrode:(5)andBrtherightborder:(6)Solving(4)resultsin:(7)Forsmallα'sthiscanbeapproximatedby:(8)Itappearstobedesirabletochooselsmallerthand,sotheerrorwilldependonlyontheangleα.Inourcase,achangeintheangleof0.6°willcauseanerrorlessthan100ppm.Withaproperdesigntheparametersεoandlareconstant,andthenthecapacitancebetweenthetwoelectrodeswilldependonlyonthedistancedbetweentheelectrodes.Ⅲ.ELIMINATIONOFPARASITICCAPACITANCESBesidesthedesiredsensorcapacitanceC,therearealsomanyparasiticcapacitancesintheactualstructure(Fig.2).ThesecapacitancescanbemodeledasshowninFig.4.HereCplrepresentstheparasiticcapacitancesfromtheelectrodeE1andCp2fromtheelectrodeE2totheguardelectrodesandtheshielding.ParasiticcapacitanceCp3resultsfromimperfectshieldingandformsanoffsetcapacitance.WhenthetransducercapacitanceCxisconnectedtoanA(yù)Cvoltagesourceandthecurrentthroughtheelectrodeismeasured,CplandCp2willbeeliminated.Cp3canbeeliminatedbyperforminganoffsetmeasurement.Fig.4.EliminationofparasiticcapacitancesThecurrentismeasuredbytheamplifierwithshuntfeedback,whichhasaverylowinputimpedance.Toobtaintherequiredlinearity,theunity-gainbandwidthfToftheamplifierhastosatisfythefollowingcondition:(9)whereTistheperiodoftheinputsignal.SinceCp2consistsofcablecapacitancesandtheinputcapacitanceoftheopamp,itmayindeedbelargerthanCfandcannotbeneglected.IV.THECONCEPTOFTHESYSTEMThesystemusesthethree-signalconceptpresentedin[2],whichisbasedonthefollowingprinciples.WhenwemeasureacapacitorCxwithalinearsystem,weobtainavalue:(10)wheremistheunknowngainandMoff,theunknownoffset.ByperformingthemeasurementofareferencequantityCref,inanidenticalwayandbymeasuringtheoffset,Moff,bymakingm=0,theparametersmandMoffareeliminated.ThefinalmeasurementresultPisdefinedas:(11)Inourcase,forthesensorcapacitanceC,itholdsthat(yī):(12)whereAxistheareaofthee(cuò)lectrode,doistheinitialdistancebetwee(cuò)nthem,εisthedielectricconstantand△disthedisplacementtobemeasured.Forthereferencee(cuò)lectrodesitholdsthat:(13)withAreftheareaanddrefthedistance.Substitutionof(12)and(13)into(10)andtheninto(11)yields:(14)Here,Pisavaluerepresentingthepositionwhilea1anda0areunknown,butstableconstants.Theconstanta1=Aref/Axisastableconstantprovidedthereisagoodmechanicalmat(yī)chingbetweentheelectrodeareas.Theconstantao=(Arefd0/(Axdref)willalsobeastableconstantprovidedthatdoanddrefareconstant.Theseconstantscanbedeterminedbyaone-timecalibrat(yī)ion.Inmanyapplicat(yī)ionsthiscalibrationcanbeomitted;whenthedisplacementsensorispartofalargersystem,anoverallcalibrationisrequiredanyway.Thisoverallcalibrationeliminatestherequirementforaseparat(yī)edeterminationofa1anda0.V.THECAPACITANCE-TO(shè)-PERIODCONVERSIONThesignalswhichareproportionaltothecapacitorvaluesareconvertedintoaperiod,usingamodifiedMartinoscillat(yī)or[4](Fig.5j.Whenthevoltageswingacrossthecapacitorisequaltothat(yī)acrosstheresistorandtheNANDgatesareswitchedoff,thisoscillat(yī)orhasaperiodToff:Toff=4RCoff.(15)Sincethevalueoftheresistoriskeptconstant,theperiodvariesonlywiththecapacitorvalue.Now,byswitchingontherightNANDport,thecapacitanceCXcanbeconnectedinparalleltoCoff.Thentheperiodbecomes:Tx=4R(Coff+Cx)=4RCx+Toff(16)TheconstantsRandToffareeliminatedinthewaydescribedinSectionIV.In[2]itisshownthatthesystemisimmuneformostofthenonidealitiesoftheopampandthecomparator,likeslewing,limitationsofbandwidthandgain,offsetvoltages,andinputbiascurrents.Thesenonidealitiesonlycauseadditiveormultiplicativeerrorswhichareeliminatedbythethree-signalapproach.VI.PERIODMEASUREMENTWITHAMICROCONTROLLERPerformingperiodmeasurementwithamicrocontrollerisaneasytask.Inourcase,anINTEL87C51FAisused,whichhas8kByteROM,256ByteRAM,andUARTforserialcommunication,andthecapabilitytomeasureperiodswitha333nsresolution.Eventhoughthecountersare16bwide,theycaneasilybee(cuò)xtendedinthesoftwareto24bormore.Theperiodmeasurementtakesplacemostlyinthehardwareofthemicrocontroller.Therefore,itispossibletolettheCPUofthemicrocontrollerperformothertasksatthesametime(Fig.6).Forinstance,simultaneouslywiththemeasurementofperiodTx,periodTrefandperiodToff,therelativecapacitancewithrespecttoCrefiscalculatedaccordingto(11),andtheresultistransferredthroughtheUARTtoapersonalcomputer.Fig.5.ModifiedMartinoscillatorwithmicrocontrollerandelectrodes.Fig.6.Periodmeasurementasbackgroundprocess.Fig.7.Positionerrorasfunctionofthepositionandestimateofthenonlinearity.VII.EXPERIMENTALRESULTSThesensorisnotsensitivetofabricationtolerancesoftheelectrodes.Thereforeinourexperimentalsetupweusedsimpleprintedcircuitboardtechnologytofabricatetheelectrodes,whichhaveaneffectiveareaof12mm×12mm.Theguardelectrodehasawidthof15mm,whilethedistancebetwee(cuò)ntheelectrodesisabout5mm.Whenthedistancebetwee(cuò)ntheelectrodesisvariedovera1mmrange,thecapacitancechangesfrom0.25pFto0.3pF.Thankstothechosenconcept,evenasimpledualopamp(TLC272AC)andCMOSNAND’scouldbeused,allowingasingle5Vsupplyvoltage.Thetotalmeasurementtimeamountstoonly100ms,wheretheoscillatorwasrunningatabout10kHz.Thesystemwastestedinafullyautomatedsetup,usinganelectricalXYtable,thedescribedsensorandapersonalcomputer.Toachievetherequiredmeasurementaccuracythesetupwasautozeroedeveryminute.Inthiswaythenonlinearity,long-termstabilityandrepeatabilityhavebeenfoundtobetterthan1μmoverarangeof1mm(Fig.7).ThisiscomparabletotheaccuracyandrangeofthesystembasedonaPSDasdescribedin[2].Asaresultoftheseexperiments,itwasfoundthattheresolutionamountstoapproximately20aF.Thisresultwasachievedbyaveragingover256oscillatorperiods.Afurtherincreaseoftheresolutionbylengtheningthemeasurementtimeisnotpossibleduetothel/fnoiseproducedbythefirststagesinboththeintegratorandtheComparator.Theabsoluteaccuracycanbederivedfromthepositionaccuracy.Sincea1mmdisplacementcorrespondstoachangeincapacitanceof50fF,theabsoluteaccuracyof1μminthepositionamountstoanabsoluteaccuracyof50aF.CONCLUSIONAlow-cost,high-performancedisplacementsensorhasbeenpresented.Thesystemisimplementedwithsimpleelectrodes,aninexpensivemicrocontrollerandalinearcapacitance-to-periodconverter.Whenthecircuitryisprovidedwithanaccurat(yī)ereferencecapacitor,thecircuitcanalsobeusedtoreplaceexpensivecapacity-measuringsystems.REFERENCES[1]G.C.M.MeijerandR.Schner,“Alinearhigh-performancePSDdisplacementtransducerwithamicrocontrollerinterfacing,”SensorsandActuators,A21-A23,pp.538-543,1990.[2]J.vanDrecht,G.C.M.Meijer,andP.C.deJong,“ConceptsforthedesignofsmartsensorsandsmartsignalprocessorsandtheirapplicationtoPSDdisplacementtransducers,”DigesrofTechnicalPapers,Transducers’91.[3]W.C.Heerens,“Applicationofcapacitancetechniquesinsensordesign,”Phys.E:Sci.Insfrum.,vol.19,pp.897-906,1986.[4]K.Martin,‘‘Avoltage-controlledswitched-capacitorrelaxationoscillator,”IEEEJ.,vol.SC-16,pp.412-413,1981.一種低成本智能式電容位置傳感器摘要本文描述了一種新的高性能,低成本電容位置測(cè)量系統(tǒng)。通過使用高線性振蕩器,屏蔽和三信號(hào)通道,大部分誤差被消除。其精確度在1毫米范圍內(nèi)達(dá)1微米。由于振蕩器的輸出可直接連接到微控制器,所以無需用A/D轉(zhuǎn)換器。Ⅰ.導(dǎo)言本文介紹了一種新型高性能,低成本的電容位移測(cè)量系統(tǒng),特點(diǎn)如下:1毫米測(cè)量范圍1微米精確度0.1s總測(cè)量時(shí)間相應(yīng)到電容域,規(guī)格相稱于:1皮法的變化范圍;只有這個(gè)范圍的50fF(fF是法拉乘以10的負(fù)15次方。f是femto的縮寫)用于位移傳感器。50aF絕對(duì)電容測(cè)量誤差。梅耶爾和施里爾[1]以及最近的范德雷赫特河,梅耶爾,和德容[2]提出了位移測(cè)量系統(tǒng),采用一個(gè)PSD(位置敏感探測(cè)器)作為傳感元件。和本文描述的電容傳感器元件相比,使用PSD的缺陷是,PSD和LED(發(fā)光二極管)有更高的成本和功率消耗。使用[2]中所提概念的信號(hào)解決器,被采用到電容元件的使用中。通過廣泛使用屏蔽,智能A/D轉(zhuǎn)換,該系統(tǒng)可以將高精確度和低成本結(jié)合。換能器產(chǎn)生可以選擇和直接由微控制器讀出的三段調(diào)制信號(hào)。微控制器,相應(yīng)的,計(jì)算位移及發(fā)送此值到主機(jī)電腦(圖1)或顯示或驅(qū)動(dòng)執(zhí)行器。電子電路電子電路上位機(jī) 執(zhí)行器演示圖1該系統(tǒng)的框圖金屬屏蔽電極屏蔽金屬屏蔽電極屏蔽圖2電極結(jié)構(gòu)的尺寸和透視圖Ⅱ.電極結(jié)構(gòu)基本傳感元件包含電容為Cx的兩個(gè)簡(jiǎn)樸電極(圖2)。較小的一個(gè)(E2)是由屏蔽電極包圍。由于使用屏蔽電極,兩電極間的電容Cx可平行于電極表面獨(dú)立運(yùn)動(dòng)(橫向平移以及旋轉(zhuǎn))。寄生電容Cp的影響可被消除,將在第3節(jié)討論。據(jù)Heerens[3],由有限屏蔽電極大小導(dǎo)致的兩個(gè)電極之間電容Cx的相對(duì)偏差小于:δ<e-π(x/d)(1)其中x是屏蔽的寬度,d是電極之間的距離。這種偏差引入了非線性。因此,我們規(guī)定δ小于100ppm。此外小電極和周邊屏蔽之間的間距產(chǎn)生一個(gè)偏差:δ<e-π(d/s)(2)S是間距的寬度。當(dāng)間距寬度小于電極之間距離的1/3時(shí),這偏差和(1)相比是微局限性道的。另一個(gè)誤差的因素也許源自兩個(gè)電極之間的有限傾斜角α(圖3)。假設(shè)符合下列條件:小電極和屏蔽電極上的電勢(shì)等于0V大型電極電勢(shì)等于V伏屏蔽電極足夠大可以看出,電場(chǎng)將同心。ddl/2l/2圖3傾斜角度α的電極為了使計(jì)算簡(jiǎn)樸,我們將假設(shè)電極在一個(gè)方向無限大。問題就成為一個(gè)二維問題,可以用極坐標(biāo)(Υ,φ)方法解決。在這種情況下,電場(chǎng)可以表述為:(3)為了計(jì)算小電極的損耗,我們?cè)O(shè)定φ為0,整定Υ:(4)Bl是小電極的左側(cè)邊界:(5)Br是右邊界:(6)求解(4)結(jié)果:(7)對(duì)小α的近似:(8)選擇比d小的l似乎是可行的,因此該誤差將只決定于角度α。在這種情況下,0.6°的角度變化,將產(chǎn)生小于100ppm的誤差。對(duì)參數(shù)εo和l是常數(shù)的設(shè)計(jì),兩個(gè)電極之間的電容將僅僅取決于電極之間的距離d。Ⅲ.寄生電容的消除除了抱負(fù)傳感器電容Cx,在實(shí)際結(jié)構(gòu)中尚有許多寄生電容(圖2)。這些電容可以建模,如圖4所示。這里Cpl代表電極El的寄生電容,Cp2是從電極E2到屏蔽電極和屏蔽層的。寄生電容Cp3導(dǎo)致不完善屏蔽,形成一個(gè)偏移電容。當(dāng)傳感器電容Cx連接到AC電壓源,通過電極的電流可測(cè),Cpl和Cp2,將被消除。Cp3可通過偏移測(cè)量消除。圖4消除寄生電容電流通過并聯(lián)反饋放大器測(cè)量,它具有非常低的輸入阻抗。要獲取所需的線性度,放大器的單位增益帶寬fT必須符合下列條件:(9)T是在此期間的輸入信號(hào)。由于Cp2涉及電纜電容和運(yùn)算放大器的輸入電容,它很也許大于Cf而不可忽略。Ⅳ.本系統(tǒng)的概念該系統(tǒng)采用了[2]提出的三信號(hào)的概念,它是基于以下原則。當(dāng)我們用線性系統(tǒng)測(cè)量電容Cx,得到一個(gè)值:(10)其中m是未知的增益,Moff是未知偏移。以相同的方式,通過測(cè)量參考量Cref,測(cè)量偏移Moff,使m=0,參數(shù)m和Moff被抵消。最后的測(cè)量結(jié)果P定義為:(11)在我們的例子中,傳感器的電容Cx為:(12)其中Ax,是電極面積,do是它們之間最初的距離,ε是介電常數(shù),△d是要測(cè)量的位移。對(duì)于參考電極,它為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論