安徽合肥市2023屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁
安徽合肥市2023屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁
安徽合肥市2023屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁
安徽合肥市2023屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁
安徽合肥市2023屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.2.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.3.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.4.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c5.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.06.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.7.若復(fù)數(shù)滿足,則()A. B. C.2 D.8.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.9.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.10.已知三棱柱()A. B. C. D.11.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線,點(diǎn)為拋物線上一動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為,則線段長度的取值范圍為__________.14.某種圓柱形的如罐的容積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為______.時(shí),可使得所用材料最省.15.已知集合,其中,.且,則集合中所有元素的和為_________.16.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.18.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點(diǎn)的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點(diǎn)是函數(shù)圖象的一個(gè)對稱中心,且,求面積的最大值.19.(12分)已知命題:,;命題:函數(shù)無零點(diǎn).(1)若為假,求實(shí)數(shù)的取值范圍;(2)若為假,為真,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于x的不等式;(2)當(dāng)時(shí),若對任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.21.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.22.(10分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計(jì)數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo),請完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計(jì)劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.2、A【解析】

分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.3、A【解析】

根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.4、A【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.5、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【點(diǎn)睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.6、D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.7、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.8、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運(yùn)算求解能力.9、C【解析】

求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.10、C【解析】因?yàn)橹比庵校珹B=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11、B【解析】

對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.12、B【解析】

由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.14、【解析】

設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值.【詳解】設(shè)圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個(gè)立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調(diào)遞減,在上單調(diào)遞增.∴當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:.【點(diǎn)睛】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題.15、2889【解析】

先計(jì)算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當(dāng)時(shí),集合中最小數(shù);當(dāng)時(shí),得到集合中最大的數(shù);故答案為:2889【點(diǎn)睛】本題考查了數(shù)列與集合綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、2【解析】

設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)更適宜(2)(3)x為2時(shí),燒開一壺水最省煤氣【解析】

(1)根據(jù)散點(diǎn)圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時(shí)間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí)取“”,即時(shí),煤氣用量最小.故x為2時(shí),燒開一壺水最省煤氣.【點(diǎn)睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.18、(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點(diǎn)是函數(shù)圖象的一個(gè)對稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【點(diǎn)睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運(yùn)算求解能力,屬于中檔基礎(chǔ)題.19、(1)(2)【解析】

(1)為假,則為真,求導(dǎo),利用導(dǎo)函數(shù)研究函數(shù)有零點(diǎn)條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當(dāng)時(shí),,單調(diào)遞增,當(dāng),,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實(shí)數(shù)滿足,則;若假真,則實(shí)數(shù)滿足,無解;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關(guān)的參數(shù)取值范圍問題的本質(zhì)是恒成立問題或有解問題.解決此類問題時(shí),一般先利用等價(jià)轉(zhuǎn)化思想將條件合理轉(zhuǎn)化,得到關(guān)于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.20、(1)(2)【解析】

(1)當(dāng)時(shí),利用含有一個(gè)絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點(diǎn)分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時(shí),由得由得解:,得∴當(dāng)時(shí),關(guān)于的不等式的解集為(2)①當(dāng)時(shí),,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時(shí),同理求得.綜上所述,的取值范圍為.【點(diǎn)睛】本小題主要考查含有一個(gè)絕對值不等式的求法,考查利用零點(diǎn)分段法解含有兩個(gè)絕對值的不等式,屬于中檔題.21、(1)證明見解析;(2)證明見解析.【解析】

(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時(shí),則在單調(diào)遞減,當(dāng)時(shí),則在單調(diào)遞增,所以,當(dāng)時(shí),,即,則在上單調(diào)遞增,當(dāng)時(shí),,易知當(dāng)時(shí),,當(dāng)時(shí),,由零點(diǎn)存在性定理知,,不妨設(shè),使得,當(dāng)時(shí),,即,當(dāng)時(shí),,即,當(dāng)時(shí),,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時(shí)等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時(shí),在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時(shí),有,故成立,從而得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.22、(1)見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論