高考數(shù)學(xué)三輪沖刺壓軸小題06 與三角函數(shù)相關(guān)的最值問題 (解析版)_第1頁
高考數(shù)學(xué)三輪沖刺壓軸小題06 與三角函數(shù)相關(guān)的最值問題 (解析版)_第2頁
高考數(shù)學(xué)三輪沖刺壓軸小題06 與三角函數(shù)相關(guān)的最值問題 (解析版)_第3頁
高考數(shù)學(xué)三輪沖刺壓軸小題06 與三角函數(shù)相關(guān)的最值問題 (解析版)_第4頁
高考數(shù)學(xué)三輪沖刺壓軸小題06 與三角函數(shù)相關(guān)的最值問題 (解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

31/31與三角函數(shù)相關(guān)的最值問題與三角函數(shù)相關(guān)的最值問題一.方法綜述三角函數(shù)相關(guān)的最值問題歷來是高考的熱點之一,利用三角函數(shù)的性質(zhì)求參數(shù)取值或范圍是往往是解決問題的關(guān)鍵,這類問題一般涉及到值域、單調(diào)性及周期性等性質(zhì),熟悉三角函數(shù)的圖象和性質(zhì)和掌握轉(zhuǎn)化思想是解題關(guān)鍵.二.解題策略類型一與三角函數(shù)的單調(diào)性、奇偶性和對稱性相關(guān)的最值問題【例1】(2020·湖北高考模擬(理))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.1 C.2 D.4【答案】C【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,正弦函數(shù)在SKIPIF1<0上遞增,所以可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的最大值為2,故選C.2.(2020·山東高考模擬)若函數(shù)SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0SKIPIF1<0而SKIPIF1<0值域為SKIPIF1<0,發(fā)現(xiàn)SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0最小值為SKIPIF1<0,選A項.3.(2020·河南南陽中學(xué)高考模擬)設(shè)>0,函數(shù)y=sin(x+)+2的圖象向右平移個單位后與原圖象重合,則的最小值是A. B. C. D.3【答案】C【解析】函數(shù)的圖象向右平移個單位后所以有,故選C【舉一反三】1.已知函數(shù)SKIPIF1<0SKIPIF1<0在區(qū)間SKIPIF1<0上恰有1個最大值點和1個最小值點,則ω的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【來源】安徽省示范高中皖北協(xié)作區(qū)2021屆高三下學(xué)期第23屆聯(lián)考數(shù)學(xué)(文)試題【答案】B【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上恰有1個最大值點和1個最小值點,SKIPIF1<0,解得SKIPIF1<0.故選:B.2.(2020·河南高考模擬)已知函數(shù)SKIPIF1<0,SKIPIF1<0的部分圖象如圖所示,則使SKIPIF1<0成立的SKIPIF1<0的最小正值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】結(jié)合圖象可知,A=2,f(x)=2sin(ωx+φ),∵f(0)=2sinφ=1,∴sinφSKIPIF1<0,∵|φ|SKIPIF1<0,∴φSKIPIF1<0,f(x)=2sin(ωxSKIPIF1<0),結(jié)合圖象及五點作圖法可知,ωSKIPIF1<02π,∴ω=2,f(x)=2sin(2xSKIPIF1<0),其對稱軸xSKIPIF1<0,k∈Z,∵f(a+x)﹣f(a﹣x)=0成立,∴f(a+x)=f(a﹣x)即f(x)的圖象關(guān)于x=a對稱,結(jié)合函數(shù)的性質(zhì),滿足條件的最小值aSKIPIF1<03.已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0是單調(diào)遞減函數(shù),SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.故選:D.類型二轉(zhuǎn)化為SKIPIF1<0型的最值問題【例2】(2020·北京人大附中高考模擬)已知函數(shù)SKIPIF1<0的一條對稱軸為SKIPIF1<0,SKIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上具有單調(diào)性,則SKIPIF1<0的最小值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題,SKIPIF1<0=SKIPIF1<0,SKIPIF1<0為輔助角,因為對稱軸為SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0又因為SKIPIF1<0在SKIPIF1<0上具有單調(diào)性,且SKIPIF1<0,所以SKIPIF1<0兩點必須關(guān)于正弦函數(shù)的對稱中心對稱,即SKIPIF1<0所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取最小為SKIPIF1<0,故選A【點睛】本題考查了三角函數(shù)綜合知識,包含圖像與性質(zhì),輔助角公式化簡等,熟悉性質(zhì)圖像是解題的關(guān)鍵.【舉一反三】1、(2020·江西高考模擬)已知SKIPIF1<0的最大值為SKIPIF1<0,若存在實數(shù)SKIPIF1<0、SKIPIF1<0,使得對任意實數(shù)SKIPIF1<0總有SKIPIF1<0成立,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】依題意SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,故選C.2.(2020·河北高考模擬)若將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位,所得圖象關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】∵SKIPIF1<0SKIPIF1<0SKIPIF1<0,函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位可得SKIPIF1<0,所得圖象關(guān)于y軸對稱,根據(jù)三角函數(shù)的對稱性,可得此函數(shù)在y軸處取得函數(shù)的最值,即SKIPIF1<0,解得SKIPIF1<0=SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0.故選D.3.已知銳角三角形SKIPIF1<0的內(nèi)角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的對邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.且SKIPIF1<0,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】依題意SKIPIF1<0,由正弦定理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由于三角形SKIPIF1<0是銳角三角形,所以SKIPIF1<0.由SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C4.(2020·河北高考模擬)將函數(shù)的圖像向左平移個單位長度后,得到的圖像,若函數(shù)在上單調(diào)遞減,則正數(shù)的最大值為A. B.1 C. D.【答案】A【解析】依題意,,向左平移個單位長度得到.故,下面求函數(shù)的減區(qū)間:由,由于故上式可化為,由于函數(shù)在上單調(diào)遞減,故,解得,所以當(dāng)時,為正數(shù)的最大值.故選A.類型三轉(zhuǎn)化為二次函數(shù)型的最值問題【例3】函數(shù)SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【來源】安徽省淮北市2020-2021學(xué)年高三上學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué)試題【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時SKIPIF1<0所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,此時SKIPIF1<0,所以SKIPIF1<0故選:B【舉一反三】1.(2020·湖南高考模擬)已知SKIPIF1<0,則SKIPIF1<0的值域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2020·江西高考模擬(理))函數(shù)SKIPIF1<0的值域為_________.【答案】SKIPIF1<0【解析】由題意,可得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0為增函數(shù),在SKIPIF1<0為減函數(shù),又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故函數(shù)的值域為:SKIPIF1<0.3、函數(shù)SKIPIF1<0,關(guān)于SKIPIF1<0的為等式SKIPIF1<0對所有SKIPIF1<0都成立,則實數(shù)SKIPIF1<0的范圍為__________.【答案】SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0(舍),當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,綜上所述,SKIPIF1<0,故答案為SKIPIF1<04、求函數(shù)SKIPIF1<0的值域.【解析】SKIPIF1<0[令sinx+cosx=t,則SKIPIF1<0,其中SKIPIF1<0所以SKIPIF1<0,故值域為SKIPIF1<0.類型四轉(zhuǎn)化為三角函數(shù)函數(shù)型的最值問題【例4】(2020·黑龍江高考模擬)已知SKIPIF1<0,在這兩個實數(shù)SKIPIF1<0之間插入三個實數(shù),使這五個數(shù)構(gòu)成等差數(shù)列,那么這個等差數(shù)列后三項和的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)中間三項為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以后三項的和為SKIPIF1<0,又因為SKIPIF1<0,所以可令SKIPIF1<0,所以SKIPIF1<0,故選SKIPIF1<0【舉一反三】設(shè)點SKIPIF1<0在橢圓SKIPIF1<0上,點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【來源】浙江省寧波市2020-2021學(xué)年高三上學(xué)期期末數(shù)學(xué)試題【答案】D【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則有SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時取最小值,即SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值是SKIPIF1<0,故選:D.三.強化訓(xùn)練1.(2020·四川高考模擬)若函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度后關(guān)于SKIPIF1<0軸對稱,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【解析】函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度后,圖象所對應(yīng)解析式為:SKIPIF1<0,由SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,所以SKIPIF1<0,SKIPIF1<0,故選A.2.(2020·陜西高考模擬)將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位,再向上平移一個單位,得到g(x)=sin(2x﹣SKIPIF1<0+SKIPIF1<0)+1=﹣cos2x+1的圖象,故g(x)的最大值為2,最小值為0,若g(SKIPIF1<0)g(SKIPIF1<0)=4,則g(SKIPIF1<0)=g(SKIPIF1<0)=2,或g(SKIPIF1<0)=g(SKIPIF1<0)=﹣2(舍去).故有g(shù)(SKIPIF1<0)=g(SKIPIF1<0)=2,即cos2SKIPIF1<0=cos2SKIPIF1<0=﹣1,又SKIPIF1<0,x2∈[﹣2π,2π],∴2SKIPIF1<0,2SKIPIF1<0∈[﹣4π,4π],要使SKIPIF1<0﹣2SKIPIF1<0取得最大值,則應(yīng)有2SKIPIF1<0=3π,2SKIPIF1<0=﹣3π,故SKIPIF1<0﹣2SKIPIF1<0取得最大值為SKIPIF1<0+3π=SKIPIF1<0.故選A.3.(2020·甘肅高考模擬)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個長度單位后,所得到的圖象關(guān)于SKIPIF1<0軸對稱,則SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【詳解】由題意得,SKIPIF1<0,令SKIPIF1<0,可得函數(shù)的圖象對稱軸方程為SKIPIF1<0,取SKIPIF1<0是SKIPIF1<0軸右側(cè)且距離SKIPIF1<0軸最近的對稱軸,因為將函數(shù)的圖象向左平移SKIPIF1<0個長度單位后得到的圖象關(guān)于SKIPIF1<0軸對稱,SKIPIF1<0的最小值為SKIPIF1<0,故選B.4.(2020·山東高考模擬)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0SKIPIF1<0個單位長度,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)SKIPIF1<0的圖象,若對任意的SKIPIF1<0均有SKIPIF1<0成立,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0SKIPIF1<0個單位長度,所以得到函數(shù)SKIPIF1<0,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)SKIPIF1<0的圖象,所以SKIPIF1<0,對任意的SKIPIF1<0均有SKIPIF1<0成立,所以SKIPIF1<0在SKIPIF1<0時,取得最大值,所以有SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.5.(2020·云南高考模擬)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,所得圖象對應(yīng)的函數(shù)在區(qū)間SKIPIF1<0上無極值點,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意,將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,可得函數(shù)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0即函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,令SKIPIF1<0,可得函數(shù)的單調(diào)遞增區(qū)間為SKIPIF1<0,又由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上無極值點,則SKIPIF1<0的最大值為SKIPIF1<0,故選A.6.(2020·四川華鎣一中高考模擬)將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,得到函數(shù)SKIPIF1<0的圖像,若SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0的最大值為()A.1 B.2 C.3 D.4【答案】B【解析】由三角函數(shù)的性質(zhì)可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其圖象向左平移SKIPIF1<0個單位所得函數(shù)的解析式為:SKIPIF1<0,函數(shù)的單調(diào)遞增區(qū)間滿足:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0可得函數(shù)的一個單調(diào)遞增區(qū)間為:SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上為增函數(shù),則:SKIPIF1<0,據(jù)此可得:SKIPIF1<0,則SKIPIF1<0的最大值為2.本題選擇B選項.7.(2020·天津高考模擬)已知SKIPIF1<0同時滿足下列三個條件:①SKIPIF1<0;②SKIPIF1<0是奇函數(shù);③SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0上沒有最小值,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,可得SKIPIF1<0因為SKIPIF1<0是奇函數(shù),所以SKIPIF1<0是奇函數(shù),即SKIPIF1<0又因為SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0是奇數(shù),取k=1,此時SKIPIF1<0所以函數(shù)SKIPIF1<0因為SKIPIF1<0在SKIPIF1<0上沒有最小值,此時SKIPIF1<0所以此時SKIPIF1<0,解得SKIPIF1<0.故選D.8.已知函數(shù)SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【來源】江西省上饒市(天佑中學(xué)、余干中學(xué)等)六校2021屆高三下學(xué)期第一次聯(lián)考數(shù)學(xué)(理)試題【答案】C【解析】SKIPIF1<0且SKIPIF1<0,由題意可知,對任意的SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0成立;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,此時SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.9.(2020·廣東高考模擬)已知函數(shù)SKIPIF1<0.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒有零點,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒有零點(1)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0;綜上可知:SKIPIF1<0的取值范圍是SKIPIF1<0,選SKIPIF1<0.10.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0邊上的高為1,則SKIPIF1<0面積的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)BC邊上的高為AD,則AD=1,SKIPIF1<0,如圖所示:所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0面積的最小值為SKIPIF1<0.故選:B11.已知實數(shù)SKIPIF1<0,不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【解析】令SKIPIF1<0,原不等式整理得:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,兩邊除以SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0為增函數(shù).又SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,又SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0.則SKIPIF1<0.故選:B.12.設(shè)函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,其圖象相鄰兩條對稱軸之間的距離為SKIPIF1<0,且SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,則下列判斷正確的是()A.函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增B.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱C.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0D.要得到函數(shù)SKIPIF1<0的圖象,只需將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位【答案】D【解析】由題意可得SKIPIF1<0,函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,由于函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.對于A選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,A選項錯誤;對于B選項,SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象不關(guān)于直線SKIPIF1<0對稱,B選項錯誤;對于C選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,C選項錯誤;對于D選項,SKIPIF1<0,所以,要得到函數(shù)SKIPIF1<0的圖象,只需將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位,D選項正確.故選:D.13.設(shè)函數(shù)f(x)=sin(ωx+φ),SKIPIF1<0,SKIPIF1<0,若存在實數(shù)φ,使得集合A∩B中恰好有7個元素,則ω(ω>0)的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】∵f′(x0)=0,∴f(x0)是f(x)的最大值或最小值,又f(x)=sin(ωx+φ)的最大值或最小值在直線y=±1上,∴y=±1代入SKIPIF1<0得,SKIPIF1<0,解得﹣4≤x≤4,又存在實數(shù)φ,使得集合A∩B中恰好有7個元素,∴SKIPIF1<0,且ω>0,解得SKIPIF1<0,∴ω的取值范圍是SKIPIF1<0.故選:B.14.在平面直角坐標(biāo)系SKIPIF1<0中,已知向量SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在圓SKIPIF1<0上,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,若存在正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【來源】2021年全國高中名校名師原創(chuàng)預(yù)測卷理科數(shù)學(xué)全國卷Ⅰ(第三模擬)【答案】A【解析】解法一設(shè)SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0.即SKIPIF1<0由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0,又SKIPIF1<0為正實數(shù),解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.解法二設(shè)點SKIPIF1<0,又點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0為正實數(shù),解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.15.水車在古代是進行灌溉引水的工具,亦稱“水轉(zhuǎn)筒車”,是一種以水流作動力,取水灌田的工具.據(jù)史料記載,水車發(fā)明于隨而盛于唐,距今已有1000多年的歷史是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為SKIPIF1<0的水車,一個水斗從點SKIPIF1<0出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時120秒.經(jīng)過SKIPIF1<0秒后,水斗旋轉(zhuǎn)到SKIPIF1<0點,設(shè)點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,其縱坐標(biāo)滿足SKIPIF1<0,則下列敘述正確的是()A.SKIPIF1<0B.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增C.當(dāng)SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0D.當(dāng)SKIPIF1<0時,SKIPIF1<0【答案】D【解析】由題意,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;又點SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0;又SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0不正確;所以SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0先增后減,SKIPIF1<0錯誤;SKIPIF1<0,SKIPIF1<0時,點SKIPIF1<0到SKIPIF1<0軸的距離的最大值為6,SKIPIF1<0錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,橫坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0正確.故選:SKIPIF1<0.16.已知銳角SKIPIF1<0中,角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所對的邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的面積SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】利用正弦定理可知SKIPIF1<0SKIPIF1<0,又SKIPIF1<0為銳角三角形,SKIPIF1<0由銳角SKIPIF1<0可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,利用正弦函數(shù)性質(zhì)知SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0故選:B17.函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為()A.-1 B.SKIPIF1<0 C.SKIPIF1<0 D.1【來源】天一大聯(lián)考2020-2021學(xué)年高三上學(xué)期高中畢業(yè)班階段性測試(三)理科數(shù)學(xué)【答案】C【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0.故選:C18.在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】有正弦定理得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.其中SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0.故選:B19.向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為()A.3 B.4 C.5 D.6【答案】B【解析】由向量的坐標(biāo)運算得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,由三角函數(shù)的性質(zhì)得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.所以SKIPIF1<0.故選:B.20.已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上的最大值為M,則M的最小值為________.【來源】湖南省長沙市長郡中學(xué)2021屆高三下學(xué)期月考(七)數(shù)學(xué)試題【答案】SKIPIF1<0【解析】由于函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.不妨取SKIPIF1<0,則SKIPIF1<0.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),則SKIPIF1<0SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上先增后減,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上先減后增,同理可知SKIPIF1<0的最小值為SKIPIF1<0.SKIPIF1<0,綜上可知,SKIPIF1<0的最小值為SKIPIF1<0.21.已知函數(shù)SKIPIF1<0,若對于任意SKIPIF1<0,均有SKIPIF1<0,則SKIPIF1<0的最大值是___________.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0

∴當(dāng)SKIPIF1<0時,SKIPIF1<0有SKIPIF1<0;SKIPIF1<0有SKIPIF1<0;由SKIPIF1<0有SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0有SKIPIF1<0;SKIPIF1<0有SKIPIF1<0;由SKIPIF1<0有SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞減,SKIPIF1<0上遞增;SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增;SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,SKIPIF1<0上遞增;∴綜上,SKIPIF1<0在SKIPIF1<0上先減后增,則SKIPIF1<0,可得SKIPIF1<0∴SKIPIF1<0恒成立,即SKIPIF1<0的最大值是-1.故答案為:SKIPIF1<0.22.在SKIPIF1<0中,角SKIPIF1<0的對邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0有最大值,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【解析】由于SKIPIF1<0,所以SKIPIF1<0,由正弦定理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,沒有最大值,所以SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,要使SKIPIF1<0有最大值,則SKIPIF1<0要能取SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<023.若函數(shù)SKIPIF1<0的定義域存在SKIPIF1<0,使SKIPIF1<0成立,則稱該函數(shù)為“互補函數(shù)”.若函數(shù)SKIPIF1<0在SKIPIF1<0上為“互補函數(shù)”,則SKIPIF1<0的取值范圍為___________.【來源】重組卷01-沖刺2021年高考數(shù)學(xué)(理)之精選真題模擬重組卷(新課標(biāo)卷)【答案】SKIPIF1<0【解析】SKIPIF1<0,由“互補函數(shù)”的定義得:存在SKIPIF1<0,SKIPIF1<0,所以令SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在至少兩個極大值點,則SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時,即SKIPIF1<0,顯然符合題意;當(dāng)SKIPIF1<0時,分以下兩種情況討論,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.24.(2020·陜西高考模擬)若向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】3【解析】根據(jù)題意,由于向量SKIPIF1<0,SKIPIF1<0,則可知SKIPIF1<0=SKIPIF1<0,那么化為單一函數(shù)可知SKIPIF1<0,可知最大值為3,故填寫3.24.(2020·浙江高考模擬)定義式子運算為將函數(shù)的圖像向左平移個單位,所得圖像對應(yīng)的函數(shù)為偶函數(shù),則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論