版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.2.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.3.已知函數(shù)(,)的一個零點是,函數(shù)圖象的一條對稱軸是直線,則當取得最小值時,函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()4.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.5.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.6.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個7.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.8.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.9.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位10.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.111.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.12.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),其圖象關于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.14.已知隨機變量服從正態(tài)分布,若,則_________.15.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務,每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)16.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.18.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.19.(12分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結論.20.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.21.(12分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統(tǒng)計,結果如下:加工1個零件用時(分鐘)20253035頻數(shù)(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數(shù)學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.2.B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.3.B【解析】
根據(jù)函數(shù)的一個零點是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調(diào)遞增區(qū)間是().故選:B【點睛】此題考查三角函數(shù)的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數(shù)值為零,屬于較易題目.4.A【解析】
可將問題轉(zhuǎn)化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數(shù)形結合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題5.B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關鍵是要能由三視圖解析出原幾何體,從而解決問題.6.C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.7.C【解析】
將圓,化為標準方程為,求得圓心為.根據(jù)圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.8.D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想,應用意識.9.A【解析】
運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).10.B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.11.C【解析】
判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.12.D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關鍵就是結合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.14.0.4【解析】
因為隨機變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態(tài)分布所以正態(tài)曲線關于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.15.5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點睛】利用排列組合計數(shù)時,關鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。16.11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.18.(1)2;(2).【解析】
(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點睛】本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學生的分類思想和計算能力,屬于中檔題.19.(1);(2)存在,Q為線段中點【解析】
解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大?。唬?)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意,對于任意的實數(shù)要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應用,屬于中檔題.20.(1)(2)【解析】
(1)當時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標軸的交點坐標分別為,再利用三角形面積公式由求解.【詳解】(1)當時,不等式可化為:①當時,不等式化為,解得:②當時,不等式化為,解得:,③當時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標軸的交點坐標分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應用,還考查分類討論的思想和運算求解的能力,屬于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防雷設施安裝維護合同三篇
- 化妝品行業(yè)保安工作總結
- 兒童游樂設施設計美工工作總結
- 林業(yè)行業(yè)美工的森林保護
- 風險防范工作總結
- 【八年級下冊地理粵教版】第8章 珠江三角洲 單元測試
- 本科生畢業(yè)論文答辯記錄表
- 2025屆揚州市高三語文(上)1月質(zhì)量調(diào)研試卷及答案解析
- 創(chuàng)新成果知識產(chǎn)權合同(2篇)
- DB33T 2188.4-2019 大型賽會志愿服務崗位規(guī)范 第4部分:禮賓接待志愿服務
- 養(yǎng)老服務中心裝飾裝修工程施工方案
- 落地式腳手架監(jiān)理實施細則
- 上海市金山區(qū)2022-2023學年中考一模英語試題含答案
- 節(jié)水灌溉供水工程初步設計報告
- 【期末試題】河西區(qū)2018-2019學年度第一學期六年級數(shù)學期末試題
- 2022年總經(jīng)理年會發(fā)言稿致辭二
- 警綜平臺運行管理制度
- 立法學完整版教學課件全套ppt教程
- 簡約中國風水墨山水工作總結通用PPT模板
- 礦山測量課程設計
- 藥廠生產(chǎn)車間現(xiàn)場管理-PPT課件
評論
0/150
提交評論