山西省晉中市重點2023學年高三下學期第五次調研考試數學試題含解析_第1頁
山西省晉中市重點2023學年高三下學期第五次調研考試數學試題含解析_第2頁
山西省晉中市重點2023學年高三下學期第五次調研考試數學試題含解析_第3頁
山西省晉中市重點2023學年高三下學期第五次調研考試數學試題含解析_第4頁
山西省晉中市重點2023學年高三下學期第五次調研考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.2.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.3.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.4.已知定義在上的函數滿足,且在上是增函數,不等式對于恒成立,則的取值范圍是A. B. C. D.5.若等差數列的前項和為,且,,則的值為().A.21 B.63 C.13 D.846.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉一周后形成的幾何體的表面積為()A. B. C. D.7.如圖網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.8.若,則下列不等式不能成立的是()A. B. C. D.9.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對10.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件11.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.112.已知函數的定義域為,且,當時,.若,則函數在上的最大值為()A.4 B.6 C.3 D.8二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中二項式系數最大的項的系數為_________(用數字作答).14.函數的定義域為____.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.18.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.19.(12分)已知函數(mR)的導函數為.(1)若函數存在極值,求m的取值范圍;(2)設函數(其中e為自然對數的底數),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數k的取值集合.20.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.21.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.22.(10分)已知函數.(1)當時,求不等式的解集;(2)若對任意成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常??紤]用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.2.A【解析】

根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.3.B【解析】

由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.4.A【解析】

根據奇偶性定義和性質可判斷出函數為偶函數且在上是減函數,由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數,圖象關于軸對稱又在上是增函數在上是減函數,即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數的奇偶性和單調性求解函數不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數單調性將函數值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.5.B【解析】

由已知結合等差數列的通項公式及求和公式可求,,然后結合等差數列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數列的通項公式及求和公式的簡單應用,屬于基礎題.6.B【解析】

根據斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側面展開圖是扇形根據扇形面積公式即可求得組合體的表面積.【詳解】根據“斜二測畫法”可得,,,繞AB所在直線旋轉一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.7.C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.8.B【解析】

根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.9.A【解析】

首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.10.B【解析】

解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.11.B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.12.A【解析】

根據所給函數解析式滿足的等量關系及指數冪運算,可得;利用定義可證明函數的單調性,由賦值法即可求得函數在上的最大值.【詳解】函數的定義域為,且,則;任取,且,則,故,令,,則,即,故函數在上單調遞增,故,令,,故,故函數在上的最大值為4.故選:A.【點睛】本題考查了指數冪的運算及化簡,利用定義證明抽象函數的單調性,賦值法在抽象函數求值中的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.5670【解析】

根據二項式展開的通項,可得二項式系數的最大項,可求得其系數.【詳解】二項展開式一共有項,所以由二項式系數的性質可知二項式系數最大的項為第5項,系數為.故答案為:5670【點睛】本題考查了二項式定理展開式的應用,由通項公式求二項式系數,屬于中檔題.14.【解析】由題意得,解得定義域為.15.【解析】

求出橢圓與雙曲線的離心率,根據離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質,掌握橢圓、雙曲線的離心率公式,屬于基礎題.16.20【解析】

由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數學運算能力,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)最小值為1.【解析】

(1)根據拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設,∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當且僅當或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.18.(1)或.(2)存在,;【解析】

(1)根據動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設,由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設,可得圓的半徑為,根據,可得方程為并化簡可得的軌跡方程為.設,,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標;方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標,根據到軸的距離可得等量關系,進而確定所過定點的坐標.【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關于于坐標原點對稱,所以在直線上,故可設.因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設,由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設,因為拋物線的焦點坐標為,點在拋物線上,所以,線段的中點的坐標為,則到軸的距離為,而,故以為徑的圓與軸切,所以當點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標準方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應用,屬于難題.19.(1)(2){1,2}.【解析】

(1)求解導數,表示出,再利用的導數可求m的取值范圍;(2)表示出,結合二次函數知識求出的最小值,再結合導數及基本不等式求出的最值,從而可求正整數k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數,則,設,則,令,則,所以單調遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數k的取值集合為{1,2}.【點睛】本題主要考查導數的應用,利用導數研究極值問題一般轉化為導數的零點問題,恒成立問題要逐步消去參數,轉化為最值問題求解,適當構造函數是轉化的關鍵,本題綜合性較強,難度較大,側重考查數學抽象和邏輯推理的核心素養(yǎng).20.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論