湖南省益陽市桃江縣2022年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
湖南省益陽市桃江縣2022年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
湖南省益陽市桃江縣2022年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
湖南省益陽市桃江縣2022年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
湖南省益陽市桃江縣2022年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.52.已知,則銳角的取值范圍是()A. B. C. D.3.如圖,已知⊙O中,半徑OC垂直于弦AB,垂足為D,若OD=3,OA=5,則AB的長為()A.2 B.4 C.6 D.84.如圖,在直線上有相距的兩點和(點在點的右側(cè)),以為圓心作半徑為的圓,過點作直線.將以的速度向右移動(點始終在直線上),則與直線在______秒時相切.A.3 B.3.5 C.3或4 D.3或3.55.已知關(guān)于x的函數(shù)y=k(x+1)和y=﹣(k≠0)它們在同一坐標(biāo)系中的大致圖象是()A. B.C. D.6.在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是()A. B. C. D.7.將二次函數(shù)y=2x2﹣4x+5的右邊進(jìn)行配方,正確的結(jié)果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+38.如圖,從一張腰長為,頂角為的等腰三角形鐵皮中剪出一個最大的扇形,用此剪下的扇形鐵皮圍成一個圓錐的側(cè)面(不計損耗),則該圓錐的底面半徑為()A. B. C. D.9.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.10.已知點P(2a+1,a﹣1)關(guān)于原點對稱的點在第一象限,則a的取值范圍是()A.a(chǎn)<﹣或a>1 B.a(chǎn)<﹣ C.﹣<a<1 D.a(chǎn)>1二、填空題(每小題3分,共24分)11.如圖所示,在中,,垂直平分,交于點,垂足為點,,,則等于___________.12.已知學(xué)校航模組設(shè)計制作的火箭的升空高度h(m)與飛行時間t(s)滿足函數(shù)表達(dá)式,則火箭升空的最大高度是___m13.若銳角滿足,則__________.14.如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應(yīng)點記為A1;AD的中點E的對應(yīng)點記為E1.若△E1FA1∽△E1BF,則AD=.15.如圖,已知點A,C在反比例函數(shù)的圖象上,點B,D在反比例函的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB=5,CD=4,AB與CD的距離為6,則a?b的值是_______.16.如圖,⊙O的半徑為4,點B是圓上一動點,點A為⊙O內(nèi)一定點,OA=4,將AB繞A點順時針方向旋轉(zhuǎn)120°到AC,以AB、BC為鄰邊作?ABCD,對角線AC、BD交于E,則OE的最大值為_____.17.如圖,將矩形紙片ABCD(AD>DC)的一角沿著過點D的直線折疊,使點A與BC邊上的點E重合,折痕交AB于點F.若BE:EC=m:n,則AF:FB=18.已知關(guān)于x的一元二次方程有兩個實數(shù)根,,若,滿足,則m的值為_____________三、解答題(共66分)19.(10分)如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.(1)求證:△AED≌△CFD;(2)求證:四邊形AECF是菱形.(3)若AD=3,AE=5,則菱形AECF的面積是多少?20.(6分)已知一次函數(shù)的圖象與二次函數(shù)的圖象相交于和,點是線段上的動點(不與重合),過點作軸,與二次函數(shù)的圖象交于點.(1)求的值;(2)求線段長的最大值;(3)當(dāng)為的等腰直角三角形時,求出此時點的坐標(biāo).21.(6分)如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊CD在y軸上,點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,AB交x軸與點E,.

(1)求k的值;(2)若,點P為y軸上一動點,當(dāng)?shù)闹底钚r,求點P的坐標(biāo).22.(8分)如圖,點、、都在半徑為的上,過點作交的延長線于點,連接,已知.(1)求證:是的切線;(2)求圖中陰影部分的面積.23.(8分)小明投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)24.(8分)如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求證:BC是⊙O的切線;(2)已知∠BAO=25°,點Q是弧AmB上的一點.①求∠AQB的度數(shù);②若OA=18,求弧AmB的長.25.(10分)為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中所提供的信息,完成下列問題:(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);(2)請把頻數(shù)分布直方圖補充完整;(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在范圍內(nèi)的學(xué)生有多少人?26.(10分)如圖,Rt△ABC中,∠ACB=90°,AC=BC,D是線段AB上一點(0<AD<AB).過點B作BE⊥CD,垂足為E.將線段CE繞點C逆時針旋轉(zhuǎn)90°,得到線段CF,連接AF,EF.設(shè)∠BCE的度數(shù)為α.(1)①依題意補全圖形.②若α=60°,則∠CAF=_____°;=_____;(2)用含α的式子表示EF與AB之間的數(shù)量關(guān)系,并證明.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題解析:連接OA,OB.∴在中,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.2、B【分析】根據(jù)銳角余弦函數(shù)值在0°到90°中,隨角度的增大而減小進(jìn)行對比即可;【詳解】銳角余弦函數(shù)值隨角度的增大而減小,∵cos30°=,cos45°=,∴若銳角的余弦值為,且則30°<α<45°;故選B.【點睛】本題主要考查了銳角三角函數(shù)的增減性,掌握銳角三角函數(shù)的增減性是解題的關(guān)鍵.3、D【解析】利用垂徑定理和勾股定理計算.【詳解】根據(jù)勾股定理得,根據(jù)垂徑定理得AB=2AD=8故選:D.【點睛】考查勾股定理和垂徑定理,熟練掌握垂徑定理是解題的關(guān)鍵.4、C【分析】根據(jù)與直線AB的相對位置分類討論:當(dāng)在直線AB左側(cè)并與直線AB相切時,根據(jù)題意,先計算運動的路程,從而求出運動時間;當(dāng)在直線AB右側(cè)并與直線AB相切時,原理同上.【詳解】解:當(dāng)在直線AB左側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO-=6cm∵以的速度向右移動∴此時的運動時間為:÷2=3s;當(dāng)在直線AB右側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO+=8cm∵以的速度向右移動∴此時的運動時間為:÷2=4s;綜上所述:與直線在3或4秒時相切故選:C.【點睛】此題考查的是直線與圓的位置關(guān)系:相切和動圓問題,掌握相切的定義和行程問題公式:時間=路程÷速度是解決此題的關(guān)鍵.5、A【分析】先根據(jù)反比例函數(shù)的性質(zhì)判斷出k的取值,再根據(jù)一次函數(shù)的性質(zhì)判斷出k取值,二者一致的即為正確答案.【詳解】解:當(dāng)k>0時,反比例函數(shù)的系數(shù)﹣k<0,反比例函數(shù)過二、四象限,一次函數(shù)過一、二、三象限,原題沒有滿足的圖形;當(dāng)k<0時,反比例函數(shù)的系數(shù)﹣k>0,所以反比例函數(shù)過一、三象限,一次函數(shù)過二、三、四象限.故選:A.6、D【分析】關(guān)鍵是m的正負(fù)的確定,對于二次函數(shù)y=ax2+bx+c,當(dāng)a>0時,開口向上;當(dāng)a<0時,開口向下.對稱軸為x=?,與y軸的交點坐標(biāo)為(0,c).【詳解】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,對稱軸為x=?>0,則對稱軸應(yīng)在y軸右側(cè),與圖象不符,故A選項錯誤;

B.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,開口方向朝下,與圖象不符,故B選項錯誤;

C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=?<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故C選項錯誤;

D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,對稱軸為x=?>0,則對稱軸應(yīng)在y軸右側(cè),與圖象相符,故D選項正確.

故選D.【點睛】此題考查一次函數(shù)和二次函數(shù)的圖象性質(zhì),解題關(guān)鍵在于要掌握它們的性質(zhì)才能靈活解題.7、C【解析】先提出二次項系數(shù),再加上一次項系數(shù)一半的平方,即得出頂點式的形式.【詳解】解:提出二次項系數(shù)得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故選:C.【點睛】本題考查二次函數(shù)的三種形式,一般式:y=ax2+bx+c,頂點式:y=a(x-h)2+k;兩根式:y=8、A【分析】根據(jù)等腰三角形的性質(zhì)得到的長,再利用弧長公式計算出弧的長,設(shè)圓錐的底面圓半徑為,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長可得到.【詳解】過作于,,,,弧的長,設(shè)圓錐的底面圓的半徑為,則,解得.故選A.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、C【分析】連接OD交AC于點G,根據(jù)垂徑定理以及弦、弧之間的關(guān)系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據(jù)勾股定理列方程求得半徑r,從而求出結(jié)果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設(shè)的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據(jù)勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.【點睛】本題主要考查垂徑定理及其推論,弧、弦之間的關(guān)系以及勾股定理,解題的關(guān)鍵是通過作輔助線構(gòu)造直角三角形,是中考??碱}型.10、B【分析】直接利用關(guān)于原點對稱點的縱橫坐標(biāo)均互為相反數(shù)分析得出答案.【詳解】點P(2a+1,a﹣1)關(guān)于原點對稱的點(﹣2a﹣1,﹣a+1)在第一象限,則,解得:a<﹣.故選:B.【點睛】此題主要考查了關(guān)于原點對稱點的性質(zhì)以及不等式組的解法,正確解不等式是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、3cm【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)線段垂直平分線性質(zhì)求出,求出,求出∠EAC,根據(jù)含30°角的直角三角形的性質(zhì)求解即可.【詳解】∵在△ABC中,∵垂直平分,故答案為:3cm.【點睛】本題考查了三角形的邊長問題,掌握三角形內(nèi)角和定理、線段垂直平分線的性質(zhì)、含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.12、1【分析】將函數(shù)解析式配方,寫成頂點式,按照二次函數(shù)的性質(zhì)可得答案.【詳解】解:∵==,∵,∴拋物線開口向下,當(dāng)x=6時,h取得最大值,火箭能達(dá)到最大高度為1m.故答案為:1.【點睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握配方法及二次函數(shù)的性質(zhì),是解題的關(guān)鍵.13、【分析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:由∠A為銳角,且,∠A=60°,

故答案為:60°.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.14、3.2.【詳解】解:∵∠ACB=90°,AB=20,BC=6,∴.設(shè)AD=2x,∵點E為AD的中點,將△ADF沿DF折疊,點A對應(yīng)點記為A2,點E的對應(yīng)點為E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2?BE2.∴,解得x=2.6或x=0(舍去).∴AD的長為2×2.6=3.2.15、【分析】利用反比例函數(shù)k的幾何意義得出a-b=4?OE,a-b=5?OF,求出=6,即可求出答案.【詳解】如圖,∵由題意知:a-b=4?OE,a-b=5?OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,能求出方程=6是解此題的關(guān)鍵.16、2+2【分析】如圖,構(gòu)造等腰△OAF,使得AO=AF,∠OAF=120°,連接CF,OB,取AF的中點J,連接EJ.證明EJ是定值,可得點E的運動軌跡是以J為圓心,EJ為半徑的圓,由此即可解決問題.【詳解】如圖,構(gòu)造等腰△OAF,使得AO=AF,∠OAF=120°,連接CF,OB,取AF的中點J,連接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=,∵四邊形BCDA是平行四邊形,∴AE=EC,∵AJ=JF,∴EJ=CF=,∴點E的運動軌跡是以J為圓心,EJ為半徑的圓,易知OJ=當(dāng)點E在OJ的延長線上時,OE的值最大,最大值為OJ+JE=,故答案為2+2.【點睛】本題考查的是圓的綜合,難度較大,解題關(guān)鍵是找出EJ是最大值.17、【分析】由折疊得,AF:FB=EF:FB.證明△BEF∽△CDE可得EF:FB=DE:EC,由BE:EC=m:n可求解.【詳解】∵BE=1,EC=2,∴BC=1.∵BC=AD=DE,∴DE=1.sin∠EDC=;∵∠DEF=90°,∴∠BEF+∠CED=90°.又∠BEF+∠BFE=90°,∴∠BFE=∠CED.又∠B=∠C,∴△BEF∽△CDE.∴EF:FB=DE:EC.∵BE:EC=m:n,∴可設(shè)BE=mk,EC=nk,則DE=(m+n)k.∴EF:FB=DE:EC=∵AF=EF,∴AF:FB=18、4【解析】由韋達(dá)定理得出x1+x2=6,x1·x2=m+4,將已知式子3x1=|x2|+2去絕對值,對x2進(jìn)行分類討論,列方程組求出x1、x2的值,即可求出m的值.【詳解】由韋達(dá)定理可得x1+x2=6,x1·x2=m+4,①當(dāng)x2≥0時,3x1=x2+2,,解得,∴m=4;②當(dāng)x2<0時,3x1=2﹣x2,,解得,不合題意,舍去.∴m=4.故答案為4.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,其中對x2分類討論去絕對值是解題的關(guān)鍵.三、解答題(共66分)19、(4)證明見解析;(4)證明見解析;(4)4【解析】試題分析:(4)由作圖知:PQ為線段AC的垂直平分線,得到AE=CE,AD=CD,由CF∥AB,得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得△AED≌△CFD;(4)由△AED≌△CFD,得到AE=CF,由EF為線段AC的垂直平分線,得到EC=EA,F(xiàn)C=FA,從而有EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形;(4)在Rt△ADE中,由勾股定理得到ED=4,故EF=8,AC=6,從而得到菱形AECF的面積.試題解析:(4)由作圖知:PQ為線段AC的垂直平分線,∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED與△CFD中,∵∠EAC=∠FCA,AD=CD,∠CFD=∠AED,∴△AED≌△CFD;(4)∵△AED≌△CFD,∴AE=CF,∵EF為線段AC的垂直平分線,∴EC=EA,F(xiàn)C=FA,∴EC=EA=FC=FA,∴四邊形AECF為菱形;(4)在Rt△ADE中,∵AD=4,AE=5,∴ED=4,∴EF=8,AC=6,∴S菱形AECF=8×6÷4=4,∴菱形AECF的面積是4.考點:4.菱形的判定;4.全等三角形的判定與性質(zhì);4.線段垂直平分線的性質(zhì).20、(1)1,3;(2)最大值為;(3)【分析】(1)將點分別代入一次函數(shù)解析式可求得b的值,再將點A的坐標(biāo)代入二次函數(shù)可求出a的值;

(2)設(shè),則,根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PC的長關(guān)于m的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)可得答案;

(3)同(2)設(shè)出點P,C的坐標(biāo),根據(jù)題意可用含m的式子表示出AC,PC的長,根據(jù)AC=PC可得關(guān)于m的方程,求得m的值,進(jìn)而求出點P的坐標(biāo).【詳解】解:(1)∵在直線上,∴,∴.又∵在拋物線上,∴,解得.(2)設(shè),則,∴,∴當(dāng)時,有最大值,最大值為.(3)如圖,∵為的等腰三角形且軸,∴連接,軸,∵,∴,.∵,∴,化簡,得,解得,(不合題意,舍去).當(dāng)時,,∴此時點的坐標(biāo)為.【點睛】本題是二次函數(shù)綜合題,主要考查了求待定系數(shù)法求函數(shù)解析式,二次函數(shù)的最值以及等腰三角形的性質(zhì)等知識,利用平行于y軸的直線上兩點間的距離建立出二次函數(shù)模型求出最值是解題關(guān)鍵.21、(1);(2)(0,)【分析】(1)設(shè)B(a,b),由反比例函數(shù)圖象上點的坐標(biāo)特征用函數(shù)a的代數(shù)式表示出來b,進(jìn)而可得ab=6,再根據(jù)可得,再設(shè)A(m,n),可得,再根據(jù)即可求得k的值;(2)先根據(jù)求得點A、B的坐標(biāo),再利用軸對稱找到符合題意的點P,求出直線的函數(shù)關(guān)系式,進(jìn)而可求出點P的坐標(biāo).【詳解】解:(1)設(shè)B(a,b),∵B在反比例函數(shù)的圖象上,∴b=,∴ab=6,即,∵.∴,∴設(shè)A(m,n),∵A在反比例函數(shù)的圖象上,∴,∴,∵,∴,∴,∴,即;(2)∵,∴當(dāng)a=2時,b==3,∴B(2,3),當(dāng)m=2時,∴A(2,-2),作點B關(guān)于y軸的對稱點(-2,3),連接,交y軸于點P,連接PB,則PB=,∴,∵兩點之間,線段最短,∴此時的即可取得最小值,設(shè)為y=k1x+b1,將(-2,3),A(2,-2)代入得解得∴令x=0,則∴點P的坐標(biāo)為(0,).

【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、兩點之間線段最短以及用待定系數(shù)法求一次函數(shù)關(guān)系式,熟練掌握反比例函數(shù)和一次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.22、(1)證明見解析;(2)6π.【分析】(1)連接,交于,由可知,,又,四邊形為平行四邊形,則,由圓周角定理可知,由內(nèi)角和定理可求,即可得證結(jié)論.(2)證明,將陰影部分面積問題轉(zhuǎn)化為求扇形的面積求解.【詳解】連接交于點,如圖:∵∴∴在中,∴∵∴∴是的切線(2)由(1)可知,在和中,∴∴∴【點睛】本題考查了圓周角定理、平行線的判定、平行四邊形的判定和性質(zhì)、切線的判定和性質(zhì)、垂徑定理、扇形面積的計算以及轉(zhuǎn)換思想和數(shù)形結(jié)合思想的應(yīng)用,熟悉各知識點內(nèi)容是推理論證的前提.23、(5)(60≤x≤76);(6)當(dāng)銷售單價定為76元時,每月可獲得最大利潤,最大利潤是6560元;(7)5.【分析】(5)由題意得,每月銷售量與銷售單價之間的關(guān)系可近似看作一次函數(shù),利潤=(定價﹣進(jìn)價)×銷售量,從而列出關(guān)系式;(6)首先確定二次函數(shù)的對稱軸,然后根據(jù)其增減性確定最大利潤即可;(7)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.【詳解】解:(5)由題意,得:w=(x﹣60)?y=(x﹣60)?(﹣50x+500)=,即(60≤x≤76);(6)對于函數(shù)的圖象的對稱軸是直線x==6.又∵a=﹣50<0,拋物線開口向下.∴當(dāng)60≤x≤76時,W隨著X的增大而增大,∴當(dāng)x=76時,W=6560答:當(dāng)銷售單價定為76元時,每月可獲得最大利潤,最大利潤是6560元.(7)取W=4得,解這個方程得:=70,=7.∵a=﹣50<0,拋物線開口向下,∴當(dāng)70≤x≤7時,w≥4.∵60≤x≤76,∴當(dāng)70≤x≤76時,w≥4.設(shè)每月的成本為P(元),由題意,得:P=60(﹣50x+500)=﹣600x+50000∵k=﹣600<0,∴P隨x的增大而減小,∴當(dāng)x=76時,P的值最小,P最小值=5.答:想要每月獲得的利潤不低于4元,小明每月的成本最少為5元.考點:5.二次函數(shù)的應(yīng)用;6.最值問題;7.二次函數(shù)的最值.24、(1)見解析;(2)①∠AQB=65°,②l弧AmB=23π.【解析】(1)連接OB,根據(jù)等腰三角形的性質(zhì)得到∠OAB=∠OBA,∠CPB=∠CBP,再根據(jù)∠PAO+∠APO=90°,繼而得出∠OBC=90°,問題得證;(2)①根據(jù)等腰三角形的性質(zhì)可得∠ABO=25°,再根據(jù)三角形內(nèi)角和定理可求得∠AOB的度數(shù),繼而根據(jù)圓周角定理即可求得答案;②根據(jù)弧長公式進(jìn)行計算即可得.【詳解】(1)連接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC是⊙O的切線;(2)①∵∠BAO=25°,OA=OB,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=∠AOB=65°;②∵∠AOB=130°,OB=18,∴l(xiāng)弧AmB==23π.【點睛】本題考查了圓周角定理,切線的判定等知識,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.25、(1)8,20,;(2)見解析;(3)200人【分析】(1)根據(jù)題意和統(tǒng)計圖可以求得a、b的值,并得到樣本成績的中位數(shù)所在的取值范圍;(2)根據(jù)b的值可以將頻

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論