版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個(gè)表面中任選個(gè),則選取的個(gè)表面互相垂直的概率為()A. B. C. D.2.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.對(duì)兩個(gè)變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.4.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.5.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.6.如圖1,《九章算術(shù)》中記載了一個(gè)“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去本三尺,問(wèn)折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問(wèn)折斷處離地面的高為()尺.A. B. C. D.7.若時(shí),,則的取值范圍為()A. B. C. D.8.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.49.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.10.我國(guó)著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無(wú)其他正因數(shù),則稱(chēng)這個(gè)整數(shù)為素?cái)?shù)),在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.11.偶函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),當(dāng)時(shí),,求()A. B. C. D.12.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為_(kāi)_________.14.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為_(kāi)_________.15.已知,滿足約束條件則的最小值為_(kāi)_________.16.已知圓C:經(jīng)過(guò)拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知?jiǎng)訄A恒過(guò)點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問(wèn):是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說(shuō)明理由.19.(12分)在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點(diǎn),若,求的值.20.(12分)已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.21.(12分)設(shè)為等差數(shù)列的前項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若滿足不等式的正整數(shù)恰有個(gè),求正實(shí)數(shù)的取值范圍.22.(10分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對(duì)數(shù),再求出四個(gè)面中任選2個(gè)的方法數(shù),從而可計(jì)算概率.【詳解】由已知平面,,可得,從該三棱錐的個(gè)面中任選個(gè)面共有種不同的選法,而選取的個(gè)表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點(diǎn)睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個(gè)數(shù).2、D【解析】
設(shè),整理得到方程組,解方程組即可解決問(wèn)題.【詳解】設(shè),因?yàn)椋?,所以,解得:,所以?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,此點(diǎn)位于第四象限.故選D【點(diǎn)睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點(diǎn)知識(shí),考查了方程思想,屬于基礎(chǔ)題.3、D【解析】
作出四個(gè)函數(shù)的圖象及給出的四個(gè)點(diǎn),觀察這四個(gè)點(diǎn)在靠近哪個(gè)曲線.【詳解】如圖,作出A,B,C,D中四個(gè)函數(shù)圖象,同時(shí)描出題中的四個(gè)點(diǎn),它們?cè)谇€的兩側(cè),與其他三個(gè)曲線都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說(shuō)明擬合效果好.4、D【解析】試題分析:先畫(huà)出可行域如圖:由,得,由,得,當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.5、D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.6、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.7、D【解析】
由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問(wèn)題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問(wèn)題,可采用參變量分離法去求解.8、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對(duì)于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒(méi)有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.9、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.10、B【解析】
先列舉出不超過(guò)的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過(guò)的素?cái)?shù)有:、、、、、,在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.11、D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時(shí),,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱(chēng)性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.12、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因?yàn)槎x在上的奇函數(shù),則,則,又因?yàn)?所以,,所以.故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識(shí)的應(yīng)用能力和計(jì)算能力,是基礎(chǔ)題.14、【解析】
根據(jù)題意,畫(huà)出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.15、【解析】
畫(huà)出可行域,通過(guò)平移基準(zhǔn)直線到可行域邊界位置,由此求得目標(biāo)函數(shù)的最小值.【詳解】畫(huà)出可行域如下圖所示,由圖可知:可行域是由三點(diǎn),,構(gòu)成的三角形及其內(nèi)部,當(dāng)直線過(guò)點(diǎn)時(shí),取得最小值.故答案為:【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、【解析】
求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項(xiàng)公式,考查錯(cuò)位相減求和法,屬于中檔題.18、(1);(2)存在,.【解析】
(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,.∴圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),,則,.因?yàn)辄c(diǎn),,在直線上,所以,,所以,所以.∴故存在,使得.【點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問(wèn)題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.19、(1)(2)【解析】
(1)首先將曲線化為直角坐標(biāo)方程,由點(diǎn)在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設(shè)、對(duì)應(yīng)的參數(shù)分別為,列出韋達(dá)定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標(biāo)方程為.由點(diǎn)在圓外,得點(diǎn)的坐標(biāo)為,結(jié)合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過(guò)點(diǎn),傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設(shè)、對(duì)應(yīng)的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結(jié)合,解得.故的值是.【點(diǎn)睛】本題考查極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.20、(1);(2)【解析】
(1)當(dāng)時(shí),由題意得到,令,分類(lèi)討論求得函數(shù)的最小值,即可求得的最大值.(2)由時(shí),不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,可得,令,則只需,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;故當(dāng)時(shí),取得最小值,即的最大值為.(2)依題意,當(dāng)時(shí),不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的解法,以及不等式的恒成立問(wèn)題的求解與應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力.21、(1);(2).【解析】
(1)設(shè)等差數(shù)列的公差為,根據(jù)題意得出關(guān)于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 痛經(jīng)課件流程教學(xué)課件
- 手機(jī)原理課件教學(xué)課件
- 護(hù)士課件英語(yǔ)教學(xué)課件
- 公司機(jī)密保密協(xié)議
- 2024年市場(chǎng)營(yíng)銷(xiāo)與協(xié)作合同
- 2024年城市供水管道鋪設(shè)工程承包合同
- 2024可再生能源發(fā)電并網(wǎng)服務(wù)合同
- 2024年婚姻外遇協(xié)議書(shū)
- 2024年《夏令營(yíng)老師與營(yíng)員心理輔導(dǎo)協(xié)議》心理輔導(dǎo)內(nèi)容與保密原則
- 2024年企業(yè)間產(chǎn)品生產(chǎn)與銷(xiāo)售合同
- 電動(dòng)車(chē)充電安全
- 管理學(xué)原理課件英文版
- 五年級(jí)上冊(cè)英語(yǔ)期中試卷-閩教版
- 2020建設(shè)工程造價(jià)數(shù)據(jù)存儲(chǔ)標(biāo)準(zhǔn)
- 港口散裝液體危險(xiǎn)化學(xué)品港口經(jīng)營(yíng)人的裝卸管理人員從業(yè)資格考試
- 人教版 六級(jí)上冊(cè)數(shù)學(xué) 四單元《比》(省級(jí)作業(yè)設(shè)計(jì)大賽作品)
- 供應(yīng)商年度評(píng)價(jià)內(nèi)容及評(píng)分表
- 政府信息公開(kāi)工作學(xué)習(xí)輔導(dǎo)
- 2023-2024學(xué)年湖北省武漢市洪山區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(含解析)
- 甄嬛傳英語(yǔ)劇本之滴血認(rèn)親
- 《我的手機(jī)我做主》的主題班會(huì)
評(píng)論
0/150
提交評(píng)論