版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
15/152020-2022全國高考真題數(shù)學(xué)匯編指數(shù)函數(shù)與對數(shù)函數(shù)一、單選題1.(2022·天津·高考真題)化簡的值為(
)A.1 B.2 C.4 D.62.(2022·浙江·高考真題)已知,則(
)A.25 B.5 C. D.3.(2022·全國·高考真題(文))已知,則(
)A. B. C. D.4.(2022·北京·高考真題)已知函數(shù),則對任意實(shí)數(shù)x,有(
)A. B.C. D.5.(2021·天津·高考真題)若,則(
)A. B. C.1 D.6.(2021·天津·高考真題)函數(shù)的圖像大致為(
)A. B.C. D.7.(2021·全國·高考真題(文))下列函數(shù)中是增函數(shù)的為(
)A. B. C. D.8.(2021·全國·高考真題(文))青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為(
)()A.1.5 B.1.2 C.0.8 D.0.69.(2020·山東·高考真題)已知函數(shù)是偶函數(shù),當(dāng)時(shí),,則該函數(shù)在上的圖像大致是(
)A. B.C. D.10.(2020·山東·高考真題)函數(shù)的定義域是(
)A. B. C. D.11.(2020·海南·高考真題)已知函數(shù)在上單調(diào)遞增,則的取值范圍是(
)A. B. C. D.12.(2020·天津·高考真題)設(shè),則的大小關(guān)系為(
)A. B. C. D.13.(2020·天津·高考真題)已知函數(shù)若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是(
)A. B.C. D.14.(2020·北京·高考真題)已知函數(shù),則不等式的解集是(
).A. B.C. D.15.(2020·海南·高考真題)基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個(gè)感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時(shí)間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計(jì)感染病例數(shù)I(t)隨時(shí)間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計(jì)出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計(jì)感染病例數(shù)增加1倍需要的時(shí)間約為(ln2≈0.69)(
)A.1.2天 B.1.8天C.2.5天 D.3.5天16.(2020·全國·高考真題(理))在新冠肺炎疫情防控期間,某超市開通網(wǎng)上銷售業(yè)務(wù),每天能完成1200份訂單的配貨,由于訂單量大幅增加,導(dǎo)致訂單積壓.為解決困難,許多志愿者踴躍報(bào)名參加配貨工作.已知該超市某日積壓500份訂單未配貨,預(yù)計(jì)第二天的新訂單超過1600份的概率為0.05,志愿者每人每天能完成50份訂單的配貨,為使第二天完成積壓訂單及當(dāng)日訂單的配貨的概率不小于0.95,則至少需要志愿者(
)A.10名 B.18名 C.24名 D.32名17.(2020·全國·高考真題(理))若,則(
)A. B. C. D.18.(2020·全國·高考真題(理))已知55<84,134<85.設(shè)a=log53,b=log85,c=log138,則(
)A.a(chǎn)<b<c B.b<a<c C.b<c<a D.c<a<b19.(2020·全國·高考真題(文))Logistic模型是常用數(shù)學(xué)模型之一,可應(yīng)用于流行病學(xué)領(lǐng)域.有學(xué)者根據(jù)公布數(shù)據(jù)建立了某地區(qū)新冠肺炎累計(jì)確診病例數(shù)I(t)(t的單位:天)的Logistic模型:,其中K為最大確診病例數(shù).當(dāng)I()=0.95K時(shí),標(biāo)志著已初步遏制疫情,則約為(
)(ln19≈3)A.60 B.63 C.66 D.6920.(2020·全國·高考真題(文))設(shè),,,則(
)A. B. C. D.21.(2020·全國·高考真題(文))設(shè),則(
)A. B. C. D.22.(2020·全國·高考真題(理))若,則(
)A. B. C. D.23.(2020·全國·高考真題(理))設(shè)函數(shù),則f(x)(
)A.是偶函數(shù),且在單調(diào)遞增 B.是奇函數(shù),且在單調(diào)遞減C.是偶函數(shù),且在單調(diào)遞增 D.是奇函數(shù),且在單調(diào)遞減二、雙空題24.(2022·全國·高考真題(文))若是奇函數(shù),則_____,______.三、填空題25.(2022·天津·高考真題)設(shè),對任意實(shí)數(shù)x,記.若至少有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.26.(2020·山東·高考真題)若,則實(shí)數(shù)的值是______.27.(2020·北京·高考真題)函數(shù)的定義域是____________.
參考答案1.B【解析】根據(jù)對數(shù)的性質(zhì)可求代數(shù)式的值.【詳解】原式,故選:B2.C【解析】根據(jù)指數(shù)式與對數(shù)式的互化,冪的運(yùn)算性質(zhì)以及對數(shù)的運(yùn)算性質(zhì)即可解出.【詳解】因?yàn)?,,即,所以.故選:C.3.A【解析】根據(jù)指對互化以及對數(shù)函數(shù)的單調(diào)性即可知,再利用基本不等式,換底公式可得,,然后由指數(shù)函數(shù)的單調(diào)性即可解出.【詳解】由可得,而,所以,即,所以.又,所以,即,所以.綜上,.故選:A.4.C【解析】直接代入計(jì)算,注意通分不要計(jì)算錯誤.【詳解】,故A錯誤,C正確;,不是常數(shù),故BD錯誤;故選:C.5.C【解析】由已知表示出,再由換底公式可求.【詳解】,,.故選:C.6.B【解析】由函數(shù)為偶函數(shù)可排除AC,再由當(dāng)時(shí),,排除D,即可得解.【詳解】設(shè),則函數(shù)的定義域?yàn)?,關(guān)于原點(diǎn)對稱,又,所以函數(shù)為偶函數(shù),排除AC;當(dāng)時(shí),,所以,排除D.故選:B.7.D【解析】根據(jù)基本初等函數(shù)的性質(zhì)逐項(xiàng)判斷后可得正確的選項(xiàng).【詳解】對于A,為上的減函數(shù),不合題意,舍.對于B,為上的減函數(shù),不合題意,舍.對于C,在為減函數(shù),不合題意,舍.對于D,為上的增函數(shù),符合題意,故選:D.8.C【解析】根據(jù)關(guān)系,當(dāng)時(shí),求出,再用指數(shù)表示,即可求解.【詳解】由,當(dāng)時(shí),,則.故選:C.9.B【解析】根據(jù)偶函數(shù),指數(shù)函數(shù)的知識確定正確選項(xiàng).【詳解】當(dāng)時(shí),,所以在上遞減,是偶函數(shù),所以在上遞增.注意到,所以B選項(xiàng)符合.故選:B10.B【解析】根據(jù)題意得到,再解不等式組即可.【詳解】由題知:,解得且.所以函數(shù)定義域?yàn)?故選:B11.D【解析】首先求出的定義域,然后求出的單調(diào)遞增區(qū)間即可.【詳解】由得或所以的定義域?yàn)橐驗(yàn)樵谏蠁握{(diào)遞增所以在上單調(diào)遞增所以故選:D【點(diǎn)睛】在求函數(shù)的單調(diào)區(qū)間時(shí)一定要先求函數(shù)的定義域.12.D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),即可得出的大小關(guān)系.【詳解】因?yàn)椋?,,所?故選:D.【點(diǎn)睛】本題考查的是有關(guān)指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應(yīng)用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應(yīng)值的范圍.比較指對冪形式的數(shù)的大小關(guān)系,常用方法:(1)利用指數(shù)函數(shù)的單調(diào)性:,當(dāng)時(shí),函數(shù)遞增;當(dāng)時(shí),函數(shù)遞減;(2)利用對數(shù)函數(shù)的單調(diào)性:,當(dāng)時(shí),函數(shù)遞增;當(dāng)時(shí),函數(shù)遞減;(3)借助于中間值,例如:0或1等.13.D【解析】由,結(jié)合已知,將問題轉(zhuǎn)化為與有個(gè)不同交點(diǎn),分三種情況,數(shù)形結(jié)合討論即可得到答案.【詳解】注意到,所以要使恰有4個(gè)零點(diǎn),只需方程恰有3個(gè)實(shí)根即可,令,即與的圖象有個(gè)不同交點(diǎn).因?yàn)?,?dāng)時(shí),此時(shí),如圖1,與有個(gè)不同交點(diǎn),不滿足題意;當(dāng)時(shí),如圖2,此時(shí)與恒有個(gè)不同交點(diǎn),滿足題意;當(dāng)時(shí),如圖3,當(dāng)與相切時(shí),聯(lián)立方程得,令得,解得(負(fù)值舍去),所以.綜上,的取值范圍為.故選:D.
【點(diǎn)晴】本題主要考查函數(shù)與方程的應(yīng)用,考查數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,是一道中檔題.14.D【解析】作出函數(shù)和的圖象,觀察圖象可得結(jié)果.【詳解】因?yàn)椋缘葍r(jià)于,在同一直角坐標(biāo)系中作出和的圖象如圖:兩函數(shù)圖象的交點(diǎn)坐標(biāo)為,不等式的解為或.所以不等式的解集為:.故選:D.【點(diǎn)睛】本題考查了圖象法解不等式,屬于基礎(chǔ)題.15.B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計(jì)感染病例數(shù)增加1倍需要的時(shí)間為天,根據(jù),解得即可得結(jié)果.【詳解】因?yàn)?,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計(jì)感染病例數(shù)增加1倍需要的時(shí)間為天,則,所以,所以,所以天.故選:B.【點(diǎn)睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.16.B【解析】算出第二天訂單數(shù),除以志愿者每天能完成的訂單配貨數(shù)即可.【詳解】由題意,第二天新增訂單數(shù)為,,故至少需要志愿者名.故選:B【點(diǎn)晴】本題主要考查函數(shù)模型的簡單應(yīng)用,屬于基礎(chǔ)題.17.A【解析】將不等式變?yōu)椋鶕?jù)的單調(diào)性知,以此去判斷各個(gè)選項(xiàng)中真數(shù)與的大小關(guān)系,進(jìn)而得到結(jié)果.【詳解】由得:,令,為上的增函數(shù),為上的減函數(shù),為上的增函數(shù),,,,,則A正確,B錯誤;與的大小不確定,故CD無法確定.故選:A.【點(diǎn)睛】本題考查對數(shù)式的大小的判斷問題,解題關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式,利用函數(shù)的單調(diào)性得到的大小關(guān)系,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想.18.A【解析】由題意可得、、,利用作商法以及基本不等式可得出、的大小關(guān)系,由,得,結(jié)合可得出,由,得,結(jié)合,可得出,綜合可得出、、的大小關(guān)系.【詳解】由題意可知、、,,;由,得,由,得,,可得;由,得,由,得,,可得.綜上所述,.故選:A.【點(diǎn)睛】本題考查對數(shù)式的大小比較,涉及基本不等式、對數(shù)式與指數(shù)式的互化以及指數(shù)函數(shù)單調(diào)性的應(yīng)用,考查推理能力,屬于中等題.19.C【解析】將代入函數(shù)結(jié)合求得即可得解.【詳解】,所以,則,所以,,解得.故選:C.【點(diǎn)睛】本題考查對數(shù)的運(yùn)算,考查指數(shù)與對數(shù)的互化,考查計(jì)算能力,屬于中等題.20.A【解析】分別將,改寫為,,再利用單調(diào)性比較即可.【詳解】因?yàn)椋?,所?故選:A.【點(diǎn)晴】本題考查對數(shù)式大小的比較,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.21.B【解析】根據(jù)已知等式,利用指數(shù)對數(shù)運(yùn)算性質(zhì)即可得解【詳解】由可得,所以,所以有,故選:B.【點(diǎn)睛】本題考查的是有關(guān)指對式的運(yùn)算的問題,涉及到的知識點(diǎn)有對數(shù)的運(yùn)算法則,指數(shù)的運(yùn)算法則,屬于基礎(chǔ)題目.22.B【解析】設(shè),利用作差法結(jié)合的單調(diào)性即可得到答案.【詳解】設(shè),則為增函數(shù),因?yàn)樗?,所以,所?,當(dāng)時(shí),,此時(shí),有當(dāng)時(shí),,此時(shí),有,所以C、D錯誤.故選:B.【點(diǎn)晴】本題主要考查函數(shù)與方程的綜合應(yīng)用,涉及到構(gòu)造函數(shù),利用函數(shù)的單調(diào)性比較大小,是一道中檔題.23.D【解析】根據(jù)奇偶性的定義可判斷出為奇函數(shù),排除AC;當(dāng)時(shí),利用函數(shù)單調(diào)性的性質(zhì)可判斷出單調(diào)遞增,排除B;當(dāng)時(shí),利用復(fù)合函數(shù)單調(diào)性可判斷出單調(diào)遞減,從而得到結(jié)果.【詳解】由得定義域?yàn)?,關(guān)于坐標(biāo)原點(diǎn)對稱,又,為定義域上的奇函數(shù),可排除AC;當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,排除B;當(dāng)時(shí),,在上單調(diào)遞減,在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:在上單調(diào)遞減,D正確.故選:D.【點(diǎn)睛】本題考查函數(shù)奇偶性和單調(diào)性的判斷;判斷奇偶性的方法是在定義域關(guān)于原點(diǎn)對稱的前提下,根據(jù)與的關(guān)系得到結(jié)論;判斷單調(diào)性的關(guān)鍵是能夠根據(jù)自變量的范圍化簡函數(shù),根據(jù)單調(diào)性的性質(zhì)和復(fù)合函數(shù)“同增異減”性得到結(jié)論.24.
;
.【解析】根據(jù)奇函數(shù)的定義即可求出.【詳解】因?yàn)楹瘮?shù)為奇函數(shù),所以其定義域關(guān)于原點(diǎn)對稱.由可得,,所以,解得:,即函數(shù)的定義域?yàn)?,再由可得,.即,在定義域內(nèi)滿足,符合題意.故答案為:;.25.【解析】設(shè),,分析可知函數(shù)至少有一個(gè)零點(diǎn),可得出,求出的取值范圍,然后對實(shí)數(shù)的取值范圍進(jìn)行分類討論,根據(jù)題意可得出關(guān)于實(shí)數(shù)的不等式,綜合可求得實(shí)數(shù)的取值范圍.【詳解】設(shè),,由可得.要使得函數(shù)至少有個(gè)零點(diǎn),則函數(shù)至少有一個(gè)零點(diǎn),則,解得或.①當(dāng)時(shí),,作出函數(shù)、的圖象如下圖所示:此時(shí)函數(shù)只有兩個(gè)零點(diǎn),不合乎題意;②當(dāng)時(shí),設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為、,要使得函數(shù)至少有個(gè)零點(diǎn),則,所以,,解得;③當(dāng)時(shí),,作出函數(shù)、的圖象如下圖所示:由圖可知,函數(shù)的零點(diǎn)個(gè)數(shù)為,合乎題意;④當(dāng)時(shí),設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為、,要使得函數(shù)至少有個(gè)零點(diǎn),則,可得,解得,此時(shí).綜上所述,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度企業(yè)網(wǎng)絡(luò)安全服務(wù)合同
- 2024年廣西體育館大院改善合同
- 酒店離職報(bào)告申請(萬能模板5篇)
- DB4113T 020-2021 麥后直播棉花鉀營養(yǎng)高效管理技術(shù)規(guī)程
- 2024年攝影拍攝合同協(xié)議
- DB4101T 70-2023 女貞花果化學(xué)控制技術(shù)規(guī)程
- 2024年度某環(huán)保企業(yè)與某城市管理局關(guān)于某城市垃圾分類處理項(xiàng)目的特許經(jīng)營合同
- 2024年脫硝催化劑項(xiàng)目評估分析報(bào)告
- 2024年藥品批發(fā)零售項(xiàng)目評價(jià)分析報(bào)告
- 2024年新型鋼管架建設(shè)合同
- 《全國技工院校專業(yè)目錄(2022年修訂)》專業(yè)主要信息
- EM277的DP通訊使用詳解
- 醫(yī)學(xué)考博閱讀強(qiáng)化3附答案
- 耐壓絕緣測試報(bào)告
- 野獸派 beast 花店 調(diào)研 設(shè)計(jì)-文檔資料
- 水泵房每日巡視檢查表
- 杭州市區(qū)汽車客運(yùn)站臨時(shí)加班管理規(guī)定
- 墊片沖壓模具設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 冷庫工程特點(diǎn)施工難點(diǎn)分析及對策
- Python-Django開發(fā)實(shí)戰(zhàn)
- 小學(xué)道法小學(xué)道法1我們的好朋友--第一課時(shí)ppt課件
評論
0/150
提交評論