版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:92.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設比賽組織者應邀請個隊參賽,則滿足的關系式為()A. B. C. D.3.如果實數(shù)a=,且a在數(shù)軸上對應點的位置如圖所示,其中正確的是()A.B.C.D.4.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.5.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.6.2cos30°的值等于()A.1 B. C. D.27.下列運算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a68.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④9.2017年,全國參加漢語考試的人數(shù)約為6500000,將6500000用科學記數(shù)法表示為()A.6.5×105B.6.5×106C.6.5×107D.65×10510.一個圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.在反比例函數(shù)圖象的每一支上,y隨x的增大而______用“增大”或“減小”填空.12.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.13.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.14.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.15.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.16.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.三、解答題(共8題,共72分)17.(8分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.18.(8分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).19.(8分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數(shù)______.20.(8分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數(shù)關系式;②點出發(fā)時點也從點出發(fā),以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數(shù)關系式;③直接寫出②中的最大值是.21.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.22.(10分)某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:統(tǒng)計值數(shù)值人員平均數(shù)(萬元)眾數(shù)(萬元)中位數(shù)(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.23.(12分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?24.如圖,已知是直角坐標平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側(cè)畫出放大后的圖形;填空:面積為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.2、A【解析】
根據(jù)應用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應用題,正確理解題意是解題的關鍵.3、C【解析】分析:估計的大小,進而在數(shù)軸上找到相應的位置,即可得到答案.詳解:由被開方數(shù)越大算術平方根越大,即故選C.點睛:考查了實數(shù)與數(shù)軸的的對應關系,以及估算無理數(shù)的大小,解決本題的關鍵是估計的大小.4、B【解析】
首先分別解出兩個不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數(shù)軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.5、C【解析】
根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.6、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應用,熟記30°、45°、60°角的三角函數(shù)值是解題關鍵.7、B【解析】
分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.8、B【解析】
根據(jù)拋物線圖象性質(zhì)確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側(cè),則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.9、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將6500000用科學記數(shù)法表示為:6.5×106.故答案選B.【點睛】本題考查了科學計數(shù)法,解題的關鍵是熟練的掌握科學計數(shù)法的表示形式.10、C【解析】設母線長為R,底面半徑是3cm,則底面周長=6π,側(cè)面積=3πR=12π,
∴R=4cm.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、減小【解析】
根據(jù)反比例函數(shù)的性質(zhì),依據(jù)比例系數(shù)k的符號即可確定.【詳解】∵k=2>0,∴y隨x的增大而減?。蚀鸢甘牵簻p?。军c睛】本題考查了反比例函數(shù)的性質(zhì),反比例函數(shù)y=(k≠0)的圖象是雙曲線,當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.12、55°【解析】
由翻折性質(zhì)得,∠BOG=∠B′OG,根據(jù)鄰補角定義可得.【詳解】解:由翻折性質(zhì)得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.13、1.1【解析】
求出EC,根據(jù)菱形的性質(zhì)得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質(zhì)得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質(zhì),解題關鍵是根據(jù)菱形的性質(zhì)證明△DEF∽△CEB,然后根據(jù)相似三角形的性質(zhì)可求解.14、或.【解析】
聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉(zhuǎn)化為一元二次方程解的問題是解決此題的關鍵.15、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.16、.【解析】
利用規(guī)定的運算方法,分別算得a1,a2,a3,a4…找出運算結(jié)果的循環(huán)規(guī)律,利用規(guī)律解決問題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關鍵在于掌握運算法則找到規(guī)律.三、解答題(共8題,共72分)17、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】
(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;
(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關鍵是運用了根與系數(shù)的關系以及二次函數(shù)的對稱性.18、(6+2)米【解析】
根據(jù)題意求出∠BAD=∠ADB=45°,進而根據(jù)等腰直角三角形的性質(zhì)求得FD,在Rt△PEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識求解相關線段的長度.19、∠CMA=35°.【解析】
根據(jù)兩直線平行,同旁內(nèi)角互補得出,再根據(jù)是的平分線,即可得出的度數(shù),再由兩直線平行,內(nèi)錯角相等即可得出結(jié)論.【詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【點睛】本題考查了角平分線的作法和意義,平行線的性質(zhì)等知識解決問題.解題時注意:兩直線平行,內(nèi)錯角相等.20、(1);(2)①;②當時,;當時,;當時,;③.【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標,利用兩點間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數(shù),利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點.,直線的解析式為,直線的解析式為①當時,,②當時,當時,當時,③當時,,時,的最大值為.當時,.時,的值最大,最大值為.當時,,時,的最大值為,綜上所述,最大值為故答案為.【點睛】本題考查四邊形綜合題、一次函數(shù)的應用、二次函數(shù)的應用、等腰直角三角形的性質(zhì)等知識,解題的關鍵是學會構(gòu)建一次函數(shù)或二次函數(shù)解決實際問題,屬于中考壓軸題.21、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.22、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解析】
(1)利用平均數(shù)、眾數(shù)、中位數(shù)的定義和方差的計算公式求解;(2)利用甲的平均數(shù)大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)定進行判斷.【詳解】(1)甲的平均數(shù);乙的眾數(shù)為9;丙的中位數(shù)為9,丙的方差;故答案為8.2;9;9;6.4;(2)贊同甲的說法.理由是:甲的平均數(shù)高,總營業(yè)額比乙、丙都高,每月的營業(yè)額比較穩(wěn)定.【點睛】本題考查了方差:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小.記住方差的計算公式.也考查了平均數(shù)、眾數(shù)和中位數(shù).23、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GH/T 1430-2023農(nóng)民專業(yè)合作社信用信息數(shù)據(jù)元
- 《汽車結(jié)構(gòu)認識》課件
- 單位管理制度合并選集【職員管理】十篇
- 單位管理制度范例選集職工管理十篇
- 單位管理制度呈現(xiàn)合集職工管理十篇
- 單位管理制度呈現(xiàn)大合集員工管理
- 《店鋪運營管理》課件
- 《生藥分析1》課程實施大綱
- 某科技園物業(yè)管理方案
- 2024年供電公司安全稽查總結(jié)
- 《皮膚病中成藥導引》課件
- 2024-2030年中國除顫儀行業(yè)市場分析報告
- 2024年山東省公務員錄用考試《行測》真題及答案解析
- 眼鏡學智慧樹知到答案2024年溫州醫(yī)科大學
- 推薦-挖掘機檢驗報告精品
- 排洪溝工程設計說明
- 23、PFMEA檢查表
- CSX購倂Conrail之后能夠產(chǎn)生的綜效(synergy)列示
- 煤礦機電事故影響考核管理辦法
- 三段式電流保護課程設計
- 施工電梯基礎(地下室頂板加固圖文并茂)施工方案
評論
0/150
提交評論