




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
HeatHeatConduction導熱 §2-11BasicTemperaturefield(溫度場Multi-dimensional
1BasicTemperaturefield(溫度場CoordinateSystem(坐標系
z
p(x,y,zy
p(r,,
p(r,,r z
yx
alongrectangularbar2-D:T=f(x,y)
a 1-D:T=f(
Rectangular(x,y,z
Cylindricalcoordinates(r,,z)
Sphericalcoordinates(r,,)11BasicTemperaturefield(溫度場T=f(x,y,z,tsteadyTT11Basic1BasicTemperaturefield(溫度場圖示isothermalsurfaces(等溫面):3-D (等溫線):2-.T-T-2Temperaturegradient(溫度梯度direction:oftemperaturen gradT=TlimTTn0 nTGTGTxiyjzT-T- Heatflux(熱流密度 q(W/m2Heattransferrate(熱流量 QQdQ(WAATotalamountofheattransfer(總熱量 QQdttt00Athesecondlawofthermodynamics(熱力學第二定律nTqT-T-heattransferdirection:oftemperature2Fourier’slawofheatconduction 導熱定律
Thermalconductivityk(熱導率QQAkQ
T
k A
W/(m
qT-
T-
iron(鐵 wood(木頭kATGkATGkAT
k純鐵811Wmk)>k木頭0.15049WmAmeasurementofamaterial’sabilitytoconductxxi yAmeasurementofamaterial’sabilitytoconduct QxiQyjQz ThermalThermalGases:T,kGasesaretheleastconductivee.g.air(k=0.026W/m·oCatLiquids:T,k(Water:T,kSolids:T,kThermalPureMetalsaregoodelectricalandthermale.g.Cu:400 Al:237Crystallinesolidsaremostconductivematerialsbutpoorelectricalconductors.Puremetalsaregoodthermalconductorsbutalloysthosemetalsareusuallypoore.g.Commercialbronze(90%Cuand10%k=52e.g.Cu:20,000W/m·oCat3Insulator(絕熱材料絕熱性能料 1.孔隙中氣相導——占50%~2.固體骨架導熱poresize(孔隙尺寸5μm porosity(孔隙率 : 絕熱材 氣Thermaldiffusivity(熱擴散率
HeatconductedHeatstored
(m2ThermalThermal METALSMETALSilverALLOYSCopperNONMETALLIC NichromeManganese1HydrogenWood Insulator絕熱材料Opaquesolid,k<0.12ExperimentalSetupsforMeasuring k aQWeaA.L QW,kLeA(TTQQW/ek A1ItrepresentshowfastheatdiffusesthroughakCp TableA-3~TableA-124GG V5HeatHeatgenerationisinfactconversionofoneformofenergytothermalenergyinsideamedium.e.g.electrical/nuclear/chemicalenergyHeatsource(heatisreleased),heatsink(heatisHeatgenerationisavolumetricTotalheatgenerationwheregW/m3istherateofheatgeneration.5CHAPTERCHAPTER§2-2§2-HEATCONDUCTION12.2TheGeneralHeatConductionEquationRectangularyGeneralUnsteadyEnergygeneration,gxzNuclearElectricenergydissipationinMetabolicheatproductionin2ApplyconservationofenergyApplyconservationofenergytoelementdVelement=dxdydzduringtimedt:qqqqqExpressintermsof3QinQoutGelementHeatadded-Heatremoved+heatgenerationEnergychangewithinHeatinbyconduction,QinqxdydzdtqydxdzdtHeatgeneration,GelementHeatoutbyconduction,Qqq (qx qqq(q y(qqzqz41EnergychangeEnergychangewithintheelementExpressingEintermsofT.NeglectingchangesinkineticandpotentialenergyEUmCpTTTECTp5(kT)(kT)+(kT)+gc pSubstitute(a),(b),(c)and(d)intoenergyconservationequationanddividingthroughbydxdydzdtqx gcpApplyFourier'slawofqkT,qkT,qkxyzSubstitutinginto6 y2+z2+k1 y2+z2+k1Assume:constantAssume:constantDiffusiveTT+T+222 y 22pWhere=k/Cp(m2/s)isthethermalItisthedifferentialformulationoftheprincipleofconservationofenergy.ValidateverypointinthematerialLimitedtoisotropicandconstant7SimplificationsforspecialSteadystate:setTOne-dimensional:2T y zNoenergygeneration:setg8HeatHeatCond.Eq.inCyl.andSph.Cylindricalcoordinatesr,,1 12 2T )+gr r 2+pSphericalcoordinatesr,1 2 ) + (sinTr sin r ) g y2+z2+k2T 12T g1Ty2+z2+ Fourier-Biot2T2T2T1 Diffusion2T2T2TgPossionx y z 2T2T2Tx y z0 ce93CHAPTERHEATCONDUCTION BoundaryandInitial1
1InitialI.C.aremathematicalexpressionforthetemperaturedistributionofthemediuminitially.Unsteady:t T(x,y,z,0)f(x,y,uniform——T(x,y,z,0)2BoundaryB.C.aremathematicalequationsdescribingwhattakescephysicallyataboundary.TowriteboundaryconditionsweSelectanSelectcoordinateIdentifythephysicalconditionsatthe2TTs(1)Specifiedtemperature.(thefirstkind(C0 T(0,t)T(L,t)3q&kTsn 0(2)Specifiedheatflux.(theSecondkindUsingFourier’sInsulatedkT(0,t) T(L, 0 e.g.q&50W/mkT(0,t)sT(L,41x'x'T(0,t)x(a)InsulatedB.C.&skT(0,t)sT(L,t)0(b)Thermal0 L/20R rr r5kTh(TTn (3)FluidtemperatureTandconvectionheattransferhareknown.TsisEquatingNewton'slawwithFourier'sLeftboundary(x=T(a)kT(0,t)h[TT(0, hor(b)kT(0,t)h[T(0,t)TRightboundary(x=0 (a)T(L,h[T(L,t)T(b)kT(L,t)h[TT(L,t6Tn (TT (4)Tandofmaterialsurfaceareknown.TsisEquatingStefan-BoltzmannlawwithFourier'sAssumee.g.Leftboundary(x=(a)kT(0,t)[T4T(0,t)0Lxor(b)kT(0,t)[T(0,t)4T7 (TT (TsTnT(TT OrexpresskTh(TTn rad Wherehradisequivalentheattransferh(TT)(TT rad Combinedheattransfercoefficient:hcombined=hrad+(3)TheThirdkind(4)82(5)(5)TwodifferentmaterialswithaperfectinterfaceTwo(i)EqualityofT(0,y)=T(0,12 (ii)Equalityofheatk1xxk2x9311ConductioninaSingleLayer neSteadyLkQgxTemperaturedistributionHeattransferrate0x2TheHeatConductionTheheatconductionequationfor3-(kT)(kT)+(kT)+gc p Assume:(d)Constantd2TdxItisvalidforallproblemsdescribedbyrectangularcoordinates,subjecttothefouraboveassumptions.d(kdT)32)Generald2TdxdTC1IntegrateT(x)C1xC1andC2areconstantsofintegrationdeterminedfromB.C.Temperaturedistributionis4CHAPTERHEATCONDUCTION ONE-DIMENSIONALSTEADYSTATE113)Application3)ApplicationtoSpecialApplygeneralsolutiontospecialDeterminethetemperaturedistributionDeterminetheheattransferrateConstructthethermalSelectanoriginandcoordinateWritetheApplyB.C.todeterminetheconstantsofApplyFourier’slawtodeterminetheheat5T(x)(TT)xs s1 Case(i):SpecifiedtemperaturesatbothBoundaryT(0)Ts1T(L)(1)DetermineC1,C2andLkT(SolutionisgivenbyTCx0x ApplyingTs1C10C2Ts2C1LC2C1L C1(Ts2Ts1)/6Qx=(Ts1-Ts2)=(Ts1-L(2)DetermineQx:ApplyFourier'sQkAxDifferentiateT(x)expressionandsubstituteintotheaboveequationLk T(Qk(T-T0xx s1sLR(3)Thermalcircuit.RewriteLTs1Q7Rcd=AduetoNote:Itisvalidforsteady,1-D,constantandg82HeatHeatequationincylindrical1rT12T2Trrrr2 c 2 Itsimplifies Radial RadialConductioninaSingleCylindricalTheHeatConductionAssume:(a)Constant(b)Steadystate:T(c)1- 0(d)Noheatgeneration:gRadial9d(r)2)2)Generald(rdT) IntegrateSeparatingrdT1dT=CIntegrate1T(r)=C1lnr+C1andC2areconstantsof3)ApplicationtoSpecialCase(i):SpecifiedtemperaturesatbothT(r1)=T(r2)=r0Ts1Ts3 T(rTs1Tsln(r/rln(r/r s1(1)DetermineA1,A2andSolutionApplyT(r)=C1lnr+Ts1=C1lnr1+C2Ts2=C1lnr2+SolveforC1andC(TT)/ln(r/r s 1CT s2 s(TT)/ln(r/r)ln12 rr2Q r(1/2kL)ln(r/r2ApplyFourier's(2)Determinetheradialheattransferrate:QkA(rrForacylinderoflengthLtheareaA(r)A(r)DifferentiateT(r)dTTs1Ts2 ln(r1/r2HeatperunitQQr= Ts1 r (1/2k)ln(r/r2Q=Ts1Ts2=Ts1rln(r2r1)2kLR(3)Thermal0Ts1rradial:Rcdln(r2r1Note:andgisvalidforsteady,1-D,constantTheSolutionProcedureforSolvingHeatTransferProblemDifferentialheatcond. GeneralsolutionofdifferentialApplicationofB.C.(andUnique4SolvingHeatTransferProblem-ExampleConductioninaSingleLayerLarge neWallCase(ii)Specifiedtemperatureatx=0andconvectionatx=
Heatconductiond2TdxConstantSteady
Lk
T(0) )g
k
x
T(L)T2TemperaturedistributionHeattransferrate
GeneralSolution T
x DetermineC1,C2andT(x):ApplyB.C.andsolvingforC,C
(3)ThermalQTs1T2Ts1
L
RcdC 2 Lk/2T(x)
C2T2Ts1
dueto kDetermine
Lk/:DifferentiateT(x)expression
Rcv
Ts1 T(
T(substituteintoFourier'sQTs1 L
ogywithelectrocircuitthetemperatureatany
Ts
RL
1
T(QxQ53 e.g.a):TofindsurfacetemperatureT(L)atx=ApplyOhm’slawbetweenT(L)and
Cond.
=Aln(r/rT
2Q 2
cd
1 L1
Lk k
Conv. R 1
ats1 T(
Rad. Rrad hQxh2Qxh2A2[T(L)T2x
T4 0e.g.b):TofindtemperatureT(x)
Where
A(TT
(TT
somelocationxin T TT( T
RL
1
CombinedConv.andRad. Where = +combined Q 2
T( 11 L 11
1
(in
Applicationofthermal -ExampleConductioninaSingleLayerLarge neWallCase(iii):Convectionatboth isvalid1-constantg
Heatconductiond2Tdxh1T1T(0)dx
T0
Lx
T(
hT(L) dxx 6 sinLk
TrialandErrorMethod tive
dueto 1
T
Example2- d2T1
T(
T(
dueto RR
T(0)kdT(L)[T4T
] dueto
RcdL
GeneralsolutionT(x)C1xRcv2
T
T( QxQ
L
1C 1Q=T1 = T1
Apply R+R
+ + A A
C2TT
T(L)
T=1
1
T(x)
LkL
xA
A ToFindTL
T
TL L kxL,
TL k
LL
Rearrangetheequationtobe
TL1 T T'4LL1
PropertheleftsideconsistsofT
TL310.40.240975L100GuessthevalueofTLTrialGuessthevalueofTLTrialandErrorTL=290.2(3)SubstitutethisvalueofTLintotherightsideoftheequationCalculatenew
basing
T'
TL=293.1therightsideof TT'
Repeatstep(3)untilconvergencetodesiredaccuracyisachieved.Thesubsequenti TL=292.6
DesiredAdmission
TL=292.7Therefore,thesolutionisTL=292.77CHAPTERHEATCONDUCTION
neWallwithUniformHeatg isinapplicableSteady ConstantThermal §2- HeatConductionwithHeatina1
TemperaturedistributionHeattransferrate
g 2TT(x)gx2Cx TheHeatConduction(kT)(kT)+(kT)+gc p d2Tg2)Generaldk gdTgxC 1IntegrateTemperaturedistributionisparabolic,not33)ApplicationtoSpecialCase(i):Specifiedtemperaturesatboth dxT(L)T(x)gx2Cx Applyingg 0g0k1C1TgL2CLCgL2s122CTg T(x)Tg(L2x2s41LLLLCase(ii):Case(ii):Convectionatbothdxkh(TsThghT(x) x2Cx 0 Applying0g0k1C1k(gLC)h(TTk1 TT h5TT gL2CLCTsx hC gLgL2 T(x)TgLg(L2x2hgh 0 Tg(L2x2s622CylindricalW
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度景區(qū)景點精細化保潔服務協(xié)議
- 二零二五年度二手車轉讓及過戶手續(xù)協(xié)議
- 二零二五年度新型小區(qū)門衛(wèi)管理及應急預案合同
- 2025年度綠色節(jié)能庫房租賃合同
- 2025年度高新技術企業(yè)員工勞動合同解除終止協(xié)議書
- 2025年度物業(yè)服務合同主體變更協(xié)議范本
- 二零二五年度大數(shù)據服務股權投資與轉讓協(xié)議
- 二零二五年度冷凍庫租賃及冷鏈物流配送中心建設合同
- 二零二五年度離婚協(xié)議中財產分割執(zhí)行監(jiān)督補充協(xié)議
- 蘇武牧羊傳紅色故事觀后感
- 汽車修理常用配件信息公示
- 同濟大學信紙
- 門式鋼架廠房設計
- 口腔模型的灌制-醫(yī)學課件
- 煤礦班組建設實施方案
- (完整word版)新《中華頌》朗誦稿
- 糖尿病健康教育及飲食指導
- PFMEA模板完整版文檔
- 三無曲線(有緩)繩正法撥道自動計算表
- 教學能力比賽決賽 《英語》教案
- 《母雞》課件 王崧舟 千課萬人 (圖片版不可編輯)
評論
0/150
提交評論