傳熱學課件整合版第2章_第1頁
傳熱學課件整合版第2章_第2頁
傳熱學課件整合版第2章_第3頁
傳熱學課件整合版第2章_第4頁
傳熱學課件整合版第2章_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

HeatHeatConduction導熱 §2-11BasicTemperaturefield(溫度場Multi-dimensional

1BasicTemperaturefield(溫度場CoordinateSystem(坐標系

z

p(x,y,zy

p(r,,

p(r,,r z

yx

alongrectangularbar2-D:T=f(x,y)

a 1-D:T=f(

Rectangular(x,y,z

Cylindricalcoordinates(r,,z)

Sphericalcoordinates(r,,)11BasicTemperaturefield(溫度場T=f(x,y,z,tsteadyTT11Basic1BasicTemperaturefield(溫度場圖示isothermalsurfaces(等溫面):3-D (等溫線):2-.T-T-2Temperaturegradient(溫度梯度direction:oftemperaturen gradT=TlimTTn0 nTGTGTxiyjzT-T- Heatflux(熱流密度 q(W/m2Heattransferrate(熱流量 QQdQ(WAATotalamountofheattransfer(總熱量 QQdttt00Athesecondlawofthermodynamics(熱力學第二定律nTqT-T-heattransferdirection:oftemperature2Fourier’slawofheatconduction 導熱定律

Thermalconductivityk(熱導率QQAkQ

T

k A

W/(m

qT-

T-

iron(鐵 wood(木頭kATGkATGkAT

k純鐵811Wmk)>k木頭0.15049WmAmeasurementofamaterial’sabilitytoconductxxi yAmeasurementofamaterial’sabilitytoconduct QxiQyjQz ThermalThermalGases:T,kGasesaretheleastconductivee.g.air(k=0.026W/m·oCatLiquids:T,k(Water:T,kSolids:T,kThermalPureMetalsaregoodelectricalandthermale.g.Cu:400 Al:237Crystallinesolidsaremostconductivematerialsbutpoorelectricalconductors.Puremetalsaregoodthermalconductorsbutalloysthosemetalsareusuallypoore.g.Commercialbronze(90%Cuand10%k=52e.g.Cu:20,000W/m·oCat3Insulator(絕熱材料絕熱性能料 1.孔隙中氣相導——占50%~2.固體骨架導熱poresize(孔隙尺寸5μm porosity(孔隙率 : 絕熱材 氣Thermaldiffusivity(熱擴散率

HeatconductedHeatstored

(m2ThermalThermal METALSMETALSilverALLOYSCopperNONMETALLIC NichromeManganese1HydrogenWood Insulator絕熱材料Opaquesolid,k<0.12ExperimentalSetupsforMeasuring k aQWeaA.L QW,kLeA(TTQQW/ek A1ItrepresentshowfastheatdiffusesthroughakCp TableA-3~TableA-124GG V5HeatHeatgenerationisinfactconversionofoneformofenergytothermalenergyinsideamedium.e.g.electrical/nuclear/chemicalenergyHeatsource(heatisreleased),heatsink(heatisHeatgenerationisavolumetricTotalheatgenerationwheregW/m3istherateofheatgeneration.5CHAPTERCHAPTER§2-2§2-HEATCONDUCTION12.2TheGeneralHeatConductionEquationRectangularyGeneralUnsteadyEnergygeneration,gxzNuclearElectricenergydissipationinMetabolicheatproductionin2ApplyconservationofenergyApplyconservationofenergytoelementdVelement=dxdydzduringtimedt:qqqqqExpressintermsof3QinQoutGelementHeatadded-Heatremoved+heatgenerationEnergychangewithinHeatinbyconduction,QinqxdydzdtqydxdzdtHeatgeneration,GelementHeatoutbyconduction,Qqq (qx qqq(q y(qqzqz41EnergychangeEnergychangewithintheelementExpressingEintermsofT.NeglectingchangesinkineticandpotentialenergyEUmCpTTTECTp5(kT)(kT)+(kT)+gc pSubstitute(a),(b),(c)and(d)intoenergyconservationequationanddividingthroughbydxdydzdtqx gcpApplyFourier'slawofqkT,qkT,qkxyzSubstitutinginto6 y2+z2+k1 y2+z2+k1Assume:constantAssume:constantDiffusiveTT+T+222 y 22pWhere=k/Cp(m2/s)isthethermalItisthedifferentialformulationoftheprincipleofconservationofenergy.ValidateverypointinthematerialLimitedtoisotropicandconstant7SimplificationsforspecialSteadystate:setTOne-dimensional:2T y zNoenergygeneration:setg8HeatHeatCond.Eq.inCyl.andSph.Cylindricalcoordinatesr,,1 12 2T )+gr r 2+pSphericalcoordinatesr,1 2 ) + (sinTr sin r ) g y2+z2+k2T 12T g1Ty2+z2+ Fourier-Biot2T2T2T1 Diffusion2T2T2TgPossionx y z 2T2T2Tx y z0 ce93CHAPTERHEATCONDUCTION BoundaryandInitial1

1InitialI.C.aremathematicalexpressionforthetemperaturedistributionofthemediuminitially.Unsteady:t T(x,y,z,0)f(x,y,uniform——T(x,y,z,0)2BoundaryB.C.aremathematicalequationsdescribingwhattakescephysicallyataboundary.TowriteboundaryconditionsweSelectanSelectcoordinateIdentifythephysicalconditionsatthe2TTs(1)Specifiedtemperature.(thefirstkind(C0 T(0,t)T(L,t)3q&kTsn 0(2)Specifiedheatflux.(theSecondkindUsingFourier’sInsulatedkT(0,t) T(L, 0 e.g.q&50W/mkT(0,t)sT(L,41x'x'T(0,t)x(a)InsulatedB.C.&skT(0,t)sT(L,t)0(b)Thermal0 L/20R rr r5kTh(TTn (3)FluidtemperatureTandconvectionheattransferhareknown.TsisEquatingNewton'slawwithFourier'sLeftboundary(x=T(a)kT(0,t)h[TT(0, hor(b)kT(0,t)h[T(0,t)TRightboundary(x=0 (a)T(L,h[T(L,t)T(b)kT(L,t)h[TT(L,t6Tn (TT (4)Tandofmaterialsurfaceareknown.TsisEquatingStefan-BoltzmannlawwithFourier'sAssumee.g.Leftboundary(x=(a)kT(0,t)[T4T(0,t)0Lxor(b)kT(0,t)[T(0,t)4T7 (TT (TsTnT(TT OrexpresskTh(TTn rad Wherehradisequivalentheattransferh(TT)(TT rad Combinedheattransfercoefficient:hcombined=hrad+(3)TheThirdkind(4)82(5)(5)TwodifferentmaterialswithaperfectinterfaceTwo(i)EqualityofT(0,y)=T(0,12 (ii)Equalityofheatk1xxk2x9311ConductioninaSingleLayer neSteadyLkQgxTemperaturedistributionHeattransferrate0x2TheHeatConductionTheheatconductionequationfor3-(kT)(kT)+(kT)+gc p Assume:(d)Constantd2TdxItisvalidforallproblemsdescribedbyrectangularcoordinates,subjecttothefouraboveassumptions.d(kdT)32)Generald2TdxdTC1IntegrateT(x)C1xC1andC2areconstantsofintegrationdeterminedfromB.C.Temperaturedistributionis4CHAPTERHEATCONDUCTION ONE-DIMENSIONALSTEADYSTATE113)Application3)ApplicationtoSpecialApplygeneralsolutiontospecialDeterminethetemperaturedistributionDeterminetheheattransferrateConstructthethermalSelectanoriginandcoordinateWritetheApplyB.C.todeterminetheconstantsofApplyFourier’slawtodeterminetheheat5T(x)(TT)xs s1 Case(i):SpecifiedtemperaturesatbothBoundaryT(0)Ts1T(L)(1)DetermineC1,C2andLkT(SolutionisgivenbyTCx0x ApplyingTs1C10C2Ts2C1LC2C1L C1(Ts2Ts1)/6Qx=(Ts1-Ts2)=(Ts1-L(2)DetermineQx:ApplyFourier'sQkAxDifferentiateT(x)expressionandsubstituteintotheaboveequationLk T(Qk(T-T0xx s1sLR(3)Thermalcircuit.RewriteLTs1Q7Rcd=AduetoNote:Itisvalidforsteady,1-D,constantandg82HeatHeatequationincylindrical1rT12T2Trrrr2 c 2 Itsimplifies Radial RadialConductioninaSingleCylindricalTheHeatConductionAssume:(a)Constant(b)Steadystate:T(c)1- 0(d)Noheatgeneration:gRadial9d(r)2)2)Generald(rdT) IntegrateSeparatingrdT1dT=CIntegrate1T(r)=C1lnr+C1andC2areconstantsof3)ApplicationtoSpecialCase(i):SpecifiedtemperaturesatbothT(r1)=T(r2)=r0Ts1Ts3 T(rTs1Tsln(r/rln(r/r s1(1)DetermineA1,A2andSolutionApplyT(r)=C1lnr+Ts1=C1lnr1+C2Ts2=C1lnr2+SolveforC1andC(TT)/ln(r/r s 1CT s2 s(TT)/ln(r/r)ln12 rr2Q r(1/2kL)ln(r/r2ApplyFourier's(2)Determinetheradialheattransferrate:QkA(rrForacylinderoflengthLtheareaA(r)A(r)DifferentiateT(r)dTTs1Ts2 ln(r1/r2HeatperunitQQr= Ts1 r (1/2k)ln(r/r2Q=Ts1Ts2=Ts1rln(r2r1)2kLR(3)Thermal0Ts1rradial:Rcdln(r2r1Note:andgisvalidforsteady,1-D,constantTheSolutionProcedureforSolvingHeatTransferProblemDifferentialheatcond. GeneralsolutionofdifferentialApplicationofB.C.(andUnique4SolvingHeatTransferProblem-ExampleConductioninaSingleLayerLarge neWallCase(ii)Specifiedtemperatureatx=0andconvectionatx=

Heatconductiond2TdxConstantSteady

Lk

T(0) )g

k

x

T(L)T2TemperaturedistributionHeattransferrate

GeneralSolution T

x DetermineC1,C2andT(x):ApplyB.C.andsolvingforC,C

(3)ThermalQTs1T2Ts1

L

RcdC 2 Lk/2T(x)

C2T2Ts1

dueto kDetermine

Lk/:DifferentiateT(x)expression

Rcv

Ts1 T(

T(substituteintoFourier'sQTs1 L

ogywithelectrocircuitthetemperatureatany

Ts

RL

1

T(QxQ53 e.g.a):TofindsurfacetemperatureT(L)atx=ApplyOhm’slawbetweenT(L)and

Cond.

=Aln(r/rT

2Q 2

cd

1 L1

Lk k

Conv. R 1

ats1 T(

Rad. Rrad hQxh2Qxh2A2[T(L)T2x

T4 0e.g.b):TofindtemperatureT(x)

Where

A(TT

(TT

somelocationxin T TT( T

RL

1

CombinedConv.andRad. Where = +combined Q 2

T( 11 L 11

1

(in

Applicationofthermal -ExampleConductioninaSingleLayerLarge neWallCase(iii):Convectionatboth isvalid1-constantg

Heatconductiond2Tdxh1T1T(0)dx

T0

Lx

T(

hT(L) dxx 6 sinLk

TrialandErrorMethod tive

dueto 1

T

Example2- d2T1

T(

T(

dueto RR

T(0)kdT(L)[T4T

] dueto

RcdL

GeneralsolutionT(x)C1xRcv2

T

T( QxQ

L

1C 1Q=T1 = T1

Apply R+R

+ + A A

C2TT

T(L)

T=1

1

T(x)

LkL

xA

A ToFindTL

T

TL L kxL,

TL k

LL

Rearrangetheequationtobe

TL1 T T'4LL1

PropertheleftsideconsistsofT

TL310.40.240975L100GuessthevalueofTLTrialGuessthevalueofTLTrialandErrorTL=290.2(3)SubstitutethisvalueofTLintotherightsideoftheequationCalculatenew

basing

T'

TL=293.1therightsideof TT'

Repeatstep(3)untilconvergencetodesiredaccuracyisachieved.Thesubsequenti TL=292.6

DesiredAdmission

TL=292.7Therefore,thesolutionisTL=292.77CHAPTERHEATCONDUCTION

neWallwithUniformHeatg isinapplicableSteady ConstantThermal §2- HeatConductionwithHeatina1

TemperaturedistributionHeattransferrate

g 2TT(x)gx2Cx TheHeatConduction(kT)(kT)+(kT)+gc p d2Tg2)Generaldk gdTgxC 1IntegrateTemperaturedistributionisparabolic,not33)ApplicationtoSpecialCase(i):Specifiedtemperaturesatboth dxT(L)T(x)gx2Cx Applyingg 0g0k1C1TgL2CLCgL2s122CTg T(x)Tg(L2x2s41LLLLCase(ii):Case(ii):Convectionatbothdxkh(TsThghT(x) x2Cx 0 Applying0g0k1C1k(gLC)h(TTk1 TT h5TT gL2CLCTsx hC gLgL2 T(x)TgLg(L2x2hgh 0 Tg(L2x2s622CylindricalW

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論