版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江西省撫州市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,則tanθ的值為()A.2B.-2C.1/2D.-1/2
2.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測(cè)量,下列說(shuō)法正確的是()A.總體是240B.個(gè)體是每-個(gè)學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
3.若函數(shù)f(x)=x2+mx+1有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
4.若等比數(shù)列{an}滿足,a1+a3=20,a2+a4=40,則公比q=()A.1B.2C.-2D.4
5.已知點(diǎn)A(-1,2),B(3,4),若,則向量a=()A.(-2,-1)B.(1,3)C.(4,2)D.(2,1)
6.直線L過(guò)(-1,2)且與直線2x-3y+5=0垂直,則L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
7.過(guò)點(diǎn)A(-1,0),B(0,-1)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
8.設(shè)a>b,c>d則()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
9.在△ABC中,角A,B,C所對(duì)邊為a,b,c,“A>B”是a>b的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
10.不等式組的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
11.不等式4-x2<0的解集為()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)
12.設(shè)a,b為實(shí)數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
13.根據(jù)如圖所示的框圖,當(dāng)輸入z為6時(shí),輸出的y=()A.1B.2C.5D.10
14.過(guò)點(diǎn)A(1,0),B(0,1)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0
15.已知拋物線方程為y2=8x,則它的焦點(diǎn)到準(zhǔn)線的距離是()A.8B.4C.2D.6
16.A.(0,4)
B.C.(-2,2)
D.
17.公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則a5=()A.1B.2C.4D.8
18.直線:y+4=0與圓(x-2)2+(y+l)2=9的位置關(guān)系是()
A.相切B.相交且直線不經(jīng)過(guò)圓心C.相離D.相交且直線經(jīng)過(guò)圓心
19.設(shè)a,b為正實(shí)數(shù),則“a>b>1”是“㏒2a>㏒2b>0的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條
20.設(shè)l表示一條直線,α,β,γ表示三個(gè)不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β
B.若l//α,l//β,則α//β
C.若α//β,β//γ,則α//γ
D.若α//β,β//γ,則α//γ
二、填空題(10題)21.在△ABC中,C=60°,AB=,BC=,那么A=____.
22.函數(shù)f(x)=+㏒2x(x∈[1,2])的值域是________.
23.己知0<a<b<1,則0.2a
0.2b。
24.某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有6件,那么n=
。
25.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
26.
27.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.
28.五位同學(xué)站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.
29.
30.從某校隨機(jī)抽取100名男生,其身高的頻率分布直方圖如下,則身高在[166,182]內(nèi)的人數(shù)為____.
三、計(jì)算題(5題)31.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
32.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
33.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。
34.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
35.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
四、簡(jiǎn)答題(10題)36.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
37.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動(dòng),求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。
38.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程
39.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。
40.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
41.已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為,求雙曲線C的方程
42.簡(jiǎn)化
43.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時(shí),判斷函數(shù)的單調(diào)性并加以證明。
44.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
45.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過(guò)點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長(zhǎng)
五、證明題(10題)46.
47.△ABC的三邊分別為a,b,c,為且,求證∠C=
48.長(zhǎng)、寬、高分別為3,4,5的長(zhǎng)方體,沿相鄰面對(duì)角線截取一個(gè)三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
49.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2
+(y+1)2
=8.
50.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
51.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
52.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
53.若x∈(0,1),求證:log3X3<log3X<X3.
54.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
55.己知sin(θ+α)=sin(θ+β),求證:
六、綜合題(2題)56.己知點(diǎn)A(0,2),5(-2,-2).(1)求過(guò)A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過(guò)橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
57.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
參考答案
1.A平面向量的線性運(yùn)算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.
2.D確定總體.總體是240名學(xué)生的身高情況,個(gè)體是每一個(gè)學(xué)生的身高,樣本是40名學(xué)生的身髙,樣本容量是40.
3.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個(gè)不等實(shí)根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
4.B解:設(shè)等比數(shù)列{an}的公比為q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,
解得q=2.
5.D
6.A由于直線與2x-3y+5=0垂直,因此可以設(shè)直線方程為3x+2y+k=0,又直線L過(guò)點(diǎn)(-1,2),代入直線方程得3*(-1)+2*2+k=0,因此k=-1,所以直線方程為3x+2y-1=0。
7.C直線的兩點(diǎn)式方程.點(diǎn)代入驗(yàn)證方程.
8.B不等式的性質(zhì)。由不等式性質(zhì)得B正確.
9.C正弦定理的應(yīng)用,充要條件的判斷.大邊對(duì)大角,大角也就對(duì)應(yīng)大邊.
10.C由不等式組可得,所以或,由①可得,求得;由②可得,求得,綜上可得。
11.D不等式的計(jì)算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.
12.D
13.D程序框圖的運(yùn)算.輸入x=6.程序運(yùn)行情況如下:x=6-3=3>0,x=3-3=0≥0,x=0-3=-3<0,退出循環(huán),執(zhí)行:y=x2+1=(-3)2+1=10,輸出y=10.
14.A直線的兩點(diǎn)式方程.點(diǎn)代入方程驗(yàn)證.
15.B拋物線方程為y2=2px=2*4x,焦點(diǎn)坐標(biāo)為(p/2,0)=(2,0),準(zhǔn)線方程為x=-p/2=-2,則焦點(diǎn)到準(zhǔn)線的距離為p/2-(-p/2)=p=4。
16.A
17.A
18.A直線與圓的位置關(guān)系.圓心(2,-1)到直線y=-4的距離為|-4-(-1)|=3,而圓的半徑為3,所以直線與圓相切,
19.A充要條件.若a>b>1,那么㏒2a>㏒2b>0;若㏒2a>㏒26>0,那么a>b>l
20.C
21.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由題知BC<AB,得A<C,所以A=45°.
22.[2,5]函數(shù)值的計(jì)算.因?yàn)閥=2x,y=㏒2x為増函數(shù),所以y=2x+㏒2x在[1,2]上單調(diào)遞增,故f(x)∈[2,5].
23.>由于函數(shù)是減函數(shù),因此左邊大于右邊。
24.72
25.-3或7,
26.16
27.2/3平面向量的線性運(yùn)算,三角函數(shù)恒等變換.因?yàn)閍//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
28.72,
29.45
30.64,在[166,182]區(qū)間的身高頻率為(0.050+0.030)×8(組距)=0.64,因此人數(shù)為100×0.64=64。
31.
32.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
33.
34.
35.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
36.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過(guò)O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
37.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
38.
39.
∵μ//v∴(2x+1.4)=(2-x,3)得
40.
41.
42.
43.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
44.
45.
46.
47.
48.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長(zhǎng)方體的體積減去所截的三棱錐的體積,即
49.
50.
∴PD//平面ACE.
51.
52.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《醫(yī)學(xué)統(tǒng)計(jì)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《食品貯藏與保鮮》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《結(jié)構(gòu)力學(xué)一》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《復(fù)變函數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 智慧高速解決方案
- 沈陽(yáng)理工大學(xué)《審計(jì)學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》13
- 沈陽(yáng)理工大學(xué)《化工工藝設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《產(chǎn)品仿生學(xué)應(yīng)用設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州海珠區(qū)法院判決繼續(xù)履行勞動(dòng)合同的案例
- 2023年銀行反洗錢知識(shí)競(jìng)賽題庫(kù)及答案(120題)
- 廣東省深圳市寶安區(qū)2024-2025學(xué)年三年級(jí)上學(xué)期月考數(shù)學(xué)試卷(10月份)
- 2024年貴州省都勻市事業(yè)單位招聘5人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 人教版六年級(jí)上冊(cè)道德與法治知識(shí)點(diǎn)
- 與薊州區(qū)幼兒園結(jié)對(duì)幫扶協(xié)議書(2篇)
- 第三次全國(guó)農(nóng)作物種質(zhì)資源普查與收集行動(dòng)實(shí)施方案
- 安徽省2023-2024學(xué)年高一上學(xué)期期中考試物理試題(含答案)
- 2024時(shí)政測(cè)試114題及參考答案
- 第二單元 探索 3 物聯(lián)網(wǎng)的定位技術(shù) (教學(xué)設(shè)計(jì)) 2024-2025學(xué)年蘇科版(2023) 初中信息技術(shù)八年級(jí)上冊(cè)
- 一年級(jí)上冊(cè)勞動(dòng)《各種各樣的職業(yè)》課件
- 標(biāo)準(zhǔn)化建設(shè)工作匯報(bào)
評(píng)論
0/150
提交評(píng)論