云南省楚雄州名校2023年中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
云南省楚雄州名校2023年中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
云南省楚雄州名校2023年中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
云南省楚雄州名校2023年中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
云南省楚雄州名校2023年中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.2.如圖,菱形中,對(duì)角線AC、BD交于點(diǎn)O,E為AD邊中點(diǎn),菱形ABCD的周長(zhǎng)為28,則OE的長(zhǎng)等于()A.3.5 B.4 C.7 D.143.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿BC向點(diǎn)C以2cm/s的速度移動(dòng),若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),P點(diǎn)到達(dá)B點(diǎn)運(yùn)動(dòng)停止,則△PBQ的面積S隨出發(fā)時(shí)間t的函數(shù)關(guān)系圖象大致是()A. B. C. D.4.如圖,△ABC的三個(gè)頂點(diǎn)分別為A(1,2)、B(4,2)、C(4,4).若反比例函數(shù)y=在第一象限內(nèi)的圖象與△ABC有交點(diǎn),則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤165.甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=6.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD7.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃8.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°9.某學(xué)校組織藝術(shù)攝影展,上交的作品要求如下:七寸照片(長(zhǎng)7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設(shè)照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×510.實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<0二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將邊長(zhǎng)為的正方形ABCD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.12.計(jì)算:(π﹣3)0+(﹣)﹣1=_____.13.如圖,直線a∥b,∠BAC的頂點(diǎn)A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.14.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長(zhǎng)為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)15.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.16.如圖(1),將一個(gè)正六邊形各邊延長(zhǎng),構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.17.若,,則的值為________.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).(1)求拋物線解析式;(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),S有最大值,這個(gè)最大值是多少?(3)若點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),過Q做y軸的平行線交拋物線于點(diǎn)P,判斷有幾個(gè)Q能使以點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形的點(diǎn),直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).19.(5分)如圖,將等腰直角三角形紙片ABC對(duì)折,折痕為CD.展平后,再將點(diǎn)B折疊在邊AC上(不與A、C重合),折痕為EF,點(diǎn)B在AC上的對(duì)應(yīng)點(diǎn)為M,設(shè)CD與EM交于點(diǎn)P,連接PF.已知BC=1.(1)若M為AC的中點(diǎn),求CF的長(zhǎng);(2)隨著點(diǎn)M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請(qǐng)說明理由;②求△PFM的周長(zhǎng)的取值范圍.20.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點(diǎn)E,點(diǎn)F為邊CD上一點(diǎn),且DF=BE.過點(diǎn)F作FG⊥CD,交邊AD于點(diǎn)G.求證:DG=DC.21.(10分)如圖所示,點(diǎn)B、F、C、E在同一直線上,AB⊥BE,DE⊥BE,連接AC、DF,且AC=DF,BF=CE,求證:AB=DE.22.(10分)有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60米/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:(1)A、B兩點(diǎn)之間的距離是米,甲機(jī)器人前2分鐘的速度為米/分;(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時(shí)間,甲機(jī)器人的速度為米/分;(4)求A、C兩點(diǎn)之間的距離;(5)若前3分鐘甲機(jī)器人的速度不變,直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.23.(12分)如圖,在的矩形方格紙中,每個(gè)小正方形的邊長(zhǎng)均為,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫出以線段為底邊的等腰,其面積為,點(diǎn)在小正方形的頂點(diǎn)上;在圖中面出以線段為一邊的,其面積為,點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上;連接,并直接寫出線段的長(zhǎng).24.(14分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)題意可得等量關(guān)系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關(guān)系列出方程組即可.【詳解】設(shè)每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.2、A【解析】

根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對(duì)角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長(zhǎng)為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點(diǎn),∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.3、C【解析】

根據(jù)題意表示出△PBQ的面積S與t的關(guān)系式,進(jìn)而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時(shí)間t的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點(diǎn)睛】此題主要考查了動(dòng)點(diǎn)問題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.4、C【解析】試題解析:由于△ABC是直角三角形,所以當(dāng)反比例函數(shù)經(jīng)過點(diǎn)A時(shí)k最小,進(jìn)過點(diǎn)C時(shí)k最大,據(jù)此可得出結(jié)論.∵△ABC是直角三角形,∴當(dāng)反比例函數(shù)經(jīng)過點(diǎn)A時(shí)k最小,經(jīng)過點(diǎn)C時(shí)k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故選C.5、A【解析】分析:直接利用兩船的行駛距離除以速度=時(shí)間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,正確表示出行駛的時(shí)間和速度是解題關(guān)鍵.6、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項(xiàng)不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF.

故選B.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.7、B【解析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個(gè)實(shí)際問題可轉(zhuǎn)化為減法運(yùn)算,列算式計(jì)算即可.【詳解】3-(-4)=3+4=7℃.

故選B.8、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.9、D【解析】試題分析:由題意得;如圖知;矩形的長(zhǎng)="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點(diǎn):列方程點(diǎn)評(píng):找到題中的等量關(guān)系,根據(jù)兩個(gè)矩形的面積3倍的關(guān)系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長(zhǎng)于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎(chǔ)題.10、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項(xiàng)正確,不符合題意;B、a的相反數(shù)≠2,故本選項(xiàng)錯(cuò)誤,符合題意;C、a的絕對(duì)值>2,故本選項(xiàng)正確,不符合題意;D、2a<0,故本選項(xiàng)正確,不符合題意.故選B.考點(diǎn):實(shí)數(shù)與數(shù)軸.二、填空題(共7小題,每小題3分,滿分21分)11、6﹣2【解析】

由旋轉(zhuǎn)角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設(shè)B′C′和CD的交點(diǎn)是O,連接OA,構(gòu)造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計(jì)算面積即可.【詳解】解:設(shè)B′C′和CD的交點(diǎn)是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【點(diǎn)睛】此題的重點(diǎn)是能夠計(jì)算出四邊形的面積.注意發(fā)現(xiàn)全等三角形.12、-1【解析】

先計(jì)算0指數(shù)冪和負(fù)指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點(diǎn)睛】考查了0指數(shù)冪和負(fù)指數(shù)冪,解題關(guān)鍵是運(yùn)用任意數(shù)的0次冪為1,a-1=.13、46【解析】試卷分析:根據(jù)平行線的性質(zhì)和平角的定義即可得到結(jié)論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.14、πcm1.【解析】

求出AD,先分別求出兩個(gè)扇形的面積,再求出答案即可.【詳解】解:∵AB長(zhǎng)為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【點(diǎn)睛】本題考查了扇形的面積計(jì)算,能熟記扇形的面積公式是解此題的關(guān)鍵.15、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°16、【解析】∵正六角星形A2F2B2D2C2E2邊長(zhǎng)是正六角星形A1F1B1D1C1E邊長(zhǎng)的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長(zhǎng)是正六角星形A1F1B1D1C1E邊長(zhǎng)的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.17、-.【解析】分析:已知第一個(gè)等式左邊利用平方差公式化簡(jiǎn),將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點(diǎn)睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)y=x2+x﹣4;(2)S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時(shí),S有最大值9;(3)Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時(shí),使點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形.【解析】

(1)設(shè)拋物線解析式為y=ax2+bx+c,然后把點(diǎn)A、B、C的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;(2)利用拋物線的解析式表示出點(diǎn)M的縱坐標(biāo),從而得到點(diǎn)M到x軸的距離,然后根據(jù)三角形面積公式表示并整理即可得解,根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點(diǎn)P、Q的坐標(biāo),然后求出PQ的長(zhǎng)度,再根據(jù)平行四邊形的對(duì)邊相等列出算式,然后解關(guān)于x的一元二次方程即可得解.【詳解】解:(1)設(shè)拋物線解析式為y=ax2+bx+c,∵拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點(diǎn)M的橫坐標(biāo)為m,∴點(diǎn)M的縱坐標(biāo)為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),∴當(dāng)m=﹣1時(shí),S有最大值,最大值為S=9;故答案為S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時(shí),S有最大值9;(3)∵點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),∴設(shè)點(diǎn)Q的坐標(biāo)為(a,﹣a),∵點(diǎn)P在拋物線上,且PQ∥y軸,∴點(diǎn)P的坐標(biāo)為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4時(shí),整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以點(diǎn)Q坐標(biāo)為(﹣4,4),②﹣a2﹣2a+4=﹣4時(shí),整理得,a2+4a﹣16=0,解得a=﹣2±2,所以點(diǎn)Q的坐標(biāo)為(﹣2+2,2﹣2)或(﹣2﹣2,2+2),綜上所述,Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時(shí),使點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形.【點(diǎn)睛】本題是對(duì)二次函數(shù)的綜合考查有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對(duì)邊相等的性質(zhì),平面直角坐標(biāo)系中兩點(diǎn)間的距離的表示,綜合性較強(qiáng),但難度不大,仔細(xì)分析便不難求解.19、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由見解析;②△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【解析】

(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長(zhǎng)即可解決問題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長(zhǎng)=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M(jìn)為AC的中點(diǎn),∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設(shè)FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長(zhǎng)=(1+)y,∵2<y<1,∴△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【點(diǎn)睛】本題考查三角形綜合題、等腰直角三角形的性質(zhì)和判定、翻折變換、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.20、證明見解析.【解析】試題分析:先由平行四邊形的性質(zhì)得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據(jù)“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,F(xiàn)G⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點(diǎn):1.全等三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).21、證明見解析【解析】試題分析:證明三角形△ABC△DEF,可得=.試題解析:證明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.22、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機(jī)器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】

(1)當(dāng)x=0時(shí)的y值即為A、B兩點(diǎn)之間的距離,由圖可知當(dāng)=2時(shí),甲追上了乙,則可知(甲速度-乙速度)×?xí)r間=A、B兩點(diǎn)之間的距離;(2)由題意求解E、F兩點(diǎn)坐標(biāo),再用待定系數(shù)法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時(shí)間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論