版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省臨沂市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.等于().A.A.0
B.
C.
D.∞
3.
A.-1/2
B.0
C.1/2
D.1
4.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.
B.
C.
D.
5.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
6.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無(wú)水平漸近線,又無(wú)鉛直漸近線
7.A.e
B.e-1
C.-e-1
D.-e
8.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
9.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
10.
11.A.A.小于0B.大于0C.等于0D.不確定
12.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
13.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
14.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
15.下列運(yùn)算中正確的有()A.A.
B.
C.
D.
16.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
17.
18.
19.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
20.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
二、填空題(20題)21.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。
22.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
23.
24.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為_(kāi)_____.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
43.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
46.求微分方程的通解.
47.
48.
49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.證明:
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.
55.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
57.求曲線在點(diǎn)(1,3)處的切線方程.
58.
59.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
五、高等數(shù)學(xué)(0題)71.f(x,y)在點(diǎn)(x0,y0)存在偏導(dǎo)數(shù)是在該點(diǎn)可微的()。
A.必要而不充分條件B.充分而不必要條件C.必要且充分條件D.既不必要也不充分條件
六、解答題(0題)72.
參考答案
1.C
2.A
3.B
4.D
5.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),
曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,
6.A
7.B所給極限為重要極限公式形式.可知.故選B.
8.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
9.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
10.C
11.C
12.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
13.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
14.B
15.C本題考查的知識(shí)點(diǎn)為重要極限公式.
所給各極限與的形式相類似.注意到上述重要極限結(jié)構(gòu)形式為
將四個(gè)選項(xiàng)與其對(duì)照??梢灾缿?yīng)該選C.
16.C
17.C
18.B
19.A
20.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
21.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
22.3
23.3yx3y-1
24.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
25.7/5
26.本題考查的知識(shí)點(diǎn)為定積分的基本公式。
27.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得
28.e1/2e1/2
解析:
29.ln|1-cosx|+Cln|1-cosx|+C解析:
30.(03)(0,3)解析:
31.
32.11解析:
33.
34.1
35.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)
36.(e-1)2
37.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
38.x2+y2=Cx2+y2=C解析:
39.
40.0<k≤1
41.
42.由二重積分物理意義知
43.
44.函數(shù)的定義域?yàn)?/p>
注意
45.
列表:
說(shuō)明
46.
47.由一階線性微分方程通解公式有
48.
則
49.
50.由等價(jià)無(wú)窮小量的定義可知
51.
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
54.
55.
56.
57.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
58.
59.
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年技術(shù)服務(wù)合同:網(wǎng)絡(luò)安全
- 2024年度船舶污染物處理合同
- 2024年房產(chǎn)定金回購(gòu)協(xié)議
- 2024年婚前房產(chǎn)協(xié)議書(shū)
- 2024年攜手共創(chuàng):金礦采礦工程承包合約
- 2024服務(wù)禮儀個(gè)人培訓(xùn)工作總結(jié)(3篇)
- 2024年房屋拆遷安置勞務(wù)協(xié)議
- 專練02七道選擇題主觀原理題-2023年高考化學(xué)考前手感保溫訓(xùn)練(全國(guó)卷)(原卷版)
- DB4113T 061-2024 水稻直播高產(chǎn)栽培技術(shù)規(guī)程
- DB4113T 035-2023 南陽(yáng)艾病蟲(chóng)害綜合防治技術(shù)規(guī)程
- 北京市海淀區(qū)2024-2025學(xué)年高三第一學(xué)期期中練習(xí)語(yǔ)文試卷含答案
- 劉潤(rùn)年度演講2024
- 小學(xué)六年級(jí)英語(yǔ)上冊(cè)《Unit 1 How can I get there》教案
- 完整版方法驗(yàn)證報(bào)告模板最終
- 電力管道資料表格(共30頁(yè))
- 大班科學(xué)活動(dòng)教案《豆豆家族》含PPT課件
- 【精品試卷】部編人教版(統(tǒng)編)一年級(jí)上冊(cè)語(yǔ)文第一單元測(cè)試卷含答案
- 金屬有機(jī)化學(xué)ppt課件
- 數(shù)學(xué)說(shuō)題稿(共4頁(yè))
- 門球協(xié)會(huì)章程
- 應(yīng)急管理試題庫(kù)
評(píng)論
0/150
提交評(píng)論